【題目】已知雙曲線的焦點(diǎn)是橢圓: ()的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線在軸上的截距為,求的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:(I)雙曲線的焦點(diǎn)為,離心率為,對(duì)于橢圓來(lái)說(shuō), ,由此求得和橢圓的方程.(II)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,利用判別式求得的一個(gè)不等關(guān)系,利用韋達(dá)定理和弦長(zhǎng)公式,求得一個(gè)等量關(guān)系,利用表示,進(jìn)而用基本不等式求得的最大值.
試題解析:
(Ⅰ)雙曲線的焦點(diǎn)坐標(biāo)為,離心率為.
因?yàn)殡p曲線的焦點(diǎn)是橢圓: ()的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù),所以,且,解得.
故橢圓的方程為.
(Ⅱ)因?yàn)?/span>,所以直線的斜率存在.
因?yàn)橹本在軸上的截距為,所以可設(shè)直線的方程為.
代入橢圓方程得 .
因?yàn)?/span> ,
所以.
設(shè), ,
根據(jù)根與系數(shù)的關(guān)系得, .
則 .
因?yàn)?/span>,即 .
整理得.
令,則.
所以 .
等號(hào)成立的條件是,此時(shí), 滿(mǎn)足,符合題意.
故的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,﹣3),點(diǎn)P的橫坐標(biāo)為14,且 =λ ,點(diǎn)Q是邊AB上一點(diǎn),且 =0.
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點(diǎn),△AEC面積的最小值是3.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是將一正方體貨物沿坡面AB裝進(jìn)汽車(chē)貨廂的平面示意圖.已知長(zhǎng)方體貨廂的高度BC為 米,tanA= ,現(xiàn)把圖中的貨物繼續(xù)往前平移,當(dāng)貨物頂點(diǎn)D與C重合時(shí),仍可把貨物放平裝進(jìn)貨廂,求BD的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點(diǎn)M、N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?
(4)如圖4,是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題錯(cuò)誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)擬對(duì)某商品進(jìn)行促銷(xiāo),現(xiàn)有兩種方案供選擇,每種促銷(xiāo)方案都需分兩個(gè)月實(shí)施,且每種方案中第一個(gè)月與第二個(gè)月的銷(xiāo)售相互獨(dú)立.根據(jù)以往促銷(xiāo)的統(tǒng)計(jì)數(shù)據(jù),若實(shí)施方案1,預(yù)計(jì)第一個(gè)月的銷(xiāo)量是促銷(xiāo)前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個(gè)月的銷(xiāo)量是第一個(gè)月的1.4倍和1.6倍的概率都是0.5;若實(shí)施方案2,預(yù)計(jì)第一個(gè)月的銷(xiāo)量是促銷(xiāo)前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個(gè)月的銷(xiāo)量是第一個(gè)月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實(shí)施方案的第二個(gè)月的銷(xiāo)量是促銷(xiāo)前銷(xiāo)量的倍數(shù).
(Ⅰ)求, 的分布列;
(Ⅱ)不管實(shí)施哪種方案, 與第二個(gè)月的利潤(rùn)之間的關(guān)系如下表,試比較哪種方案第二個(gè)月的利潤(rùn)更大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣ +bx+c與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)的坐標(biāo)為,圓的方程為,動(dòng)點(diǎn)在圓上運(yùn)動(dòng),點(diǎn)為延長(zhǎng)線上一點(diǎn),且.
(1)求點(diǎn)的軌跡方程.
(2)過(guò)點(diǎn)作圓的兩條切線, ,分別與圓相切于點(diǎn), ,求直線的方程,并判斷直線與點(diǎn)所在曲線的位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com