【題目】已知數(shù)列{an}滿(mǎn)足an+2= ,且a1=1,a2=2.
(1)求a3﹣a6+a9﹣a12+a15的值;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 當(dāng)Sn>2017時(shí),求n的最小值.
【答案】
(1)解:∵an+2= ,且a1=1,a2=2.
∴a2n﹣1=1+2(n﹣1)=2n﹣1,a2n=2×3n﹣1,
∴a3﹣a6+a9﹣a12+a15=3a9﹣a6﹣a12=3×(2×9﹣1)﹣2×32﹣2×35=﹣477.
(2)解:由(1)可知:an>0,數(shù)列{an}單調(diào)遞增.
S2n=(a1+a3+…+a2n﹣1)+(a2+a4+…+a2n)=n2+3n﹣1,
S12=62+36﹣1=764,S13=S12+a13=777,S14=72+37﹣1=2235.
∴當(dāng)Sn>2017時(shí),n的最小值為14.
【解析】(1)an+2= ,且a1=1,a2=2.可得a2n﹣1=2n﹣1,a2n=2×3n﹣1 , 即可得出:a3﹣a6+a9﹣a12+a15=3a9﹣a6﹣a12 . (2)由(1)可知:an>0,數(shù)列{an}單調(diào)遞增.可得S2n=(a1+a3+…+a2n﹣1)+(a2+a4+…+a2n)=n2+3n﹣1, 分別求出S12 , S13 , S14 . 即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(﹣mx2+2x﹣m)的定義域?yàn)镽;
命題q:函數(shù)g(x)=4lnx+ ﹣(m﹣1)x的圖象上任意一點(diǎn)處的切線(xiàn)斜率恒大于2,
若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝廠有銅絲5萬(wàn)米,鐵絲9萬(wàn)米,準(zhǔn)備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠用所有原來(lái)編制個(gè)花籃, 個(gè)花盆.
(Ⅰ)列出滿(mǎn)足的關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(Ⅱ)若出售一個(gè)花籃可獲利300元,出售一個(gè)花盤(pán)可獲利200元,那么怎樣安排花籃與花盆的編制個(gè)數(shù),可使得所得利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù),( ),若對(duì)任意,總存在,使得成立,則的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]
在直角坐標(biāo)系xOy中,圓C的方程為(x﹣1)2+y2= ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)M的極坐標(biāo)為(2,θ),過(guò)點(diǎn)M斜率為1的直線(xiàn)交圓C于A,B兩點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)求|MA||MB|的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)f(x)= ax3﹣blnx在x=1處的切線(xiàn)方程為y=﹣2x+
(Ⅰ)求f(x)的極值;
(Ⅱ)證明:x>0時(shí), < (e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com