已知函數(shù)f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,設(shè)m(x)=h(x)-g(x),n(x)=g(x)-f(x),當(dāng)x>1時(shí),試比較m(x)與n(x)的大。ㄖ恍枰獙(xiě)出結(jié)果,不必證明);
(2)若數(shù)學(xué)公式,設(shè)P是函數(shù)g(x)圖象在第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作平行于x軸的直線
與函數(shù)h(x)和f(x)的圖象分別交于A、B兩點(diǎn),過(guò)點(diǎn)P作平行于y軸的直線與函數(shù)h(x)和f(x)的圖象分別交于C、D兩點(diǎn),求證:|AB|=|CD|.

解:(1)大小關(guān)系:m(x)>n(x)
(2)由點(diǎn)P在直線g(x)=x上,設(shè)P(t,t),(t>0)
,得x=-log2t,∴A(-log2t,t),
,得,.∴.…
,D(t,-log2t),∴
∴|AB|=|CD|.…
分析:(1)大小關(guān)系:m(x)>n(x).
(2)設(shè)P(t,t),(t>0),分別求出A、B、C、D坐標(biāo),再利用兩點(diǎn)距離公式計(jì)算證明.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)及應(yīng)用,考查了圖象交點(diǎn),距離公式的應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案