【題目】算法的三種基本結(jié)構(gòu)是
A. 順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
B. 順序結(jié)構(gòu)、流程結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
C. 順序結(jié)構(gòu)、分支結(jié)構(gòu)、流程結(jié)構(gòu)
D. 流程結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、分支結(jié)構(gòu)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,,,且 , ,分別為△的三邊所對(duì)的角.
(Ⅰ)求角的大小;
(Ⅱ)若,,成等比數(shù)列,且,求邊C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,,點(diǎn)是線段的中點(diǎn)線段與交于點(diǎn).
(1)求直線的方程;
(2)求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:AP∥平面EFG;
(2)若點(diǎn)Q是線段PB的中點(diǎn),求證:PC⊥平面ADQ;
(3)求三棱錐C-EFG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的極坐標(biāo)為,曲線C的參數(shù)方程為(α為參數(shù)).
(I)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】原命題p:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”以及它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中是全稱(chēng)命題并且是真命題的是( )
A. 每個(gè)二次函數(shù)的圖象與x軸都有兩個(gè)不同的交點(diǎn)
B. 對(duì)任意非正數(shù)c,若a≤b+c,則a≤b
C. 存在一個(gè)菱形不是平行四邊形
D. 存在一個(gè)實(shí)數(shù)x使不等式x2-3x+7<0成立
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com