【題目】已知函數(shù).
(1)討論函數(shù)的極值;
(2)設(shè),若曲線在兩個(gè)不同的點(diǎn),處的切線互相平行,求證:.
【答案】(1)答案不唯一,具體見解析(2)證明見解析;
【解析】
(1)求出,分類討論或,判斷的正負(fù)即可求解.
(2)根據(jù)題意可得,代入導(dǎo)函數(shù)整理可得,利用基本不等式證出,從而,令,不妨設(shè),利用導(dǎo)數(shù)判斷的單調(diào)性,求出最小值即可證出.
解:(1),.
(i)當(dāng)時(shí),,則在上是減函數(shù),
此時(shí)無極值.
(ii)當(dāng)時(shí),考慮二次函數(shù),則.
當(dāng)時(shí),,則,
即對任意的恒成立,所以在上是增函數(shù),
此時(shí)無極值.
當(dāng)時(shí),,
則的兩根為,.
當(dāng)時(shí),;當(dāng)時(shí),;
當(dāng)時(shí),,所以在上是增函數(shù),
在上是減函數(shù),在上是增函數(shù),
所以在處有極大值,在處有極小值.
(2)由題意,得,,,,
且.
移項(xiàng)整理,得.
因?yàn)?/span>,,,
所以,即.
.
令,則.
設(shè),
則.
當(dāng)時(shí),;當(dāng)時(shí),,
所以在上是減函數(shù),在上是增函數(shù),
所以是的極小值點(diǎn),也是的最小值點(diǎn),
即,
故成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的公差為,前n項(xiàng)和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個(gè)條件中任選兩個(gè)補(bǔ)充到題干中的橫線位置,并根據(jù)你的選擇解決問題)
(I)求;
(Ⅱ)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)過點(diǎn),傾斜角為的直線l與曲線C相交于M,N兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),證明:函數(shù)在上單調(diào)遞增;
(2)若,討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠質(zhì)檢部門要對該廠流水線生產(chǎn)出的一批產(chǎn)品進(jìn)行檢驗(yàn),如果檢查到第件仍未發(fā)現(xiàn)不合格品,則此次檢查通過且認(rèn)為這批產(chǎn)品合格,如果在尚未抽到第件時(shí)已檢查到不合格品則拒絕通過且認(rèn)為這批產(chǎn)品不合格.設(shè)這批產(chǎn)品的數(shù)量足夠大,可以認(rèn)為每次檢查查到不合格品的概率都為,即每次抽查的產(chǎn)品是相互獨(dú)立的.
(1)若,求這批產(chǎn)品能夠通過檢查的概率;
(2)已知每件產(chǎn)品質(zhì)檢費(fèi)用為50元,若,設(shè)對這批產(chǎn)品的質(zhì)檢個(gè)數(shù)記作,求的分布列;
(3)在(2)的條件下,已知1000批此類產(chǎn)品,若,則總平均檢查費(fèi)用至少需要多少元?(總平均檢查費(fèi)用每批次平均檢查費(fèi)用批數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),點(diǎn) 在曲線:,(為參數(shù),)上運(yùn)動(dòng),以為極軸建立極坐標(biāo)系.直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線的標(biāo)準(zhǔn)方程和直線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于兩點(diǎn),點(diǎn)在曲線上移動(dòng),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,為中點(diǎn),點(diǎn)在上且平面,在延長線上,,交于,且
(1)證明:平面;
(2)設(shè)點(diǎn)在線段上,若二面角為,求的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)在此拋物線上,,不過原點(diǎn)的直線與拋物線C交于A,B兩點(diǎn),以AB為直徑的圓M過坐標(biāo)原點(diǎn).
(1)求拋物線C的方程;
(2)證明:直線恒過定點(diǎn);
(3)若線段AB中點(diǎn)的縱坐標(biāo)為2,求此時(shí)直線和圓M的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com