如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;

(2)已知F是AD的中點,求證:FB1⊥平面BCC1B1.

 

【答案】

(1)     (2)見解析

【解析】解:以D為坐標原點,DA,DC,DD1所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標系,則A(2a,0,0),B(2a,2a,0),C(0,2a,0),D1(0,0,a),F(xiàn)(a,0,0),B1(a,a,a),C1(0,a,a).

(1)∵=(-a,a,a),=(0,0,a),

∴cos〈,〉=

所以異面直線AB1與DD1所成角的余弦值為.

(2)證明:∵=(-a,-a,a),

=(-2a,0,0),=(0,a,a),

∴FB1⊥BB1,F(xiàn)B1⊥BC.

∵BB1∩BC=B,∴FB1⊥平面BCC1B1.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:單元雙測 同步達標活頁試卷 高二數(shù)學(下A) 人教版 題型:013

如圖所示,在多面體ABCDEF中,已知面ABCD是邊長為3的正方形,EF∥AB,EF=,EF與面AC的距離為2,則該多面體的體積為

[  ]

A.

B.5

C.6

D.

查看答案和解析>>

科目:高中數(shù)學 來源:全優(yōu)設計必修二數(shù)學蘇教版 蘇教版 題型:044

正方體是常見并且重要的多面體,對它的研究將有助于我們對立體幾何一些概念的理解和掌握.如圖所示,在正方體AC1中,E、F、G、H分別是所在棱的中點,請思考并回答下列問題:

(1)點E、F、G、H共面嗎?

(2)直線EF、GH、DG能交于一點嗎?

(3)若E、F、G、H四點共面,怎樣才能畫出過四點E、F、G、H的平面與正方體的截面?

(4)若正方形的棱長為a,那么(3)中的截面面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

如圖所示,在多面體ABCDEF中,已知ABCD是邊長為3的正方形,EF∥AB,,EF與面AC的距離為2,則該多面體的體積為

[  ]

A.
B.5
C.6
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

如圖所示,在多面體ABCDEF中,已知ABCD是邊長為3的正方形,EFAB,EF與面AC的距離為2,則該多面體的體積為

[  ]

A

B5

C6

D

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:單選題

如圖所示,在直三棱柱ABC-A1B1C1中,AB=AC=,BB1=BC=6,E、F為側棱AA1上的兩點,且EF=3,則多面體BB1C1CEF的體積為

[     ]

A.30
B.18
C.15
D.12

查看答案和解析>>

同步練習冊答案