【題目】已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=﹣1.
(1)求拋物線C的方程;
(2)過(guò)拋物線C的焦點(diǎn)作直線l,交拋物線C于A,B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為6,求|AB|.
【答案】(1)y2=4x;(2)14
【解析】
(1)運(yùn)用拋物線的準(zhǔn)線方程,得到p=2,進(jìn)而得到拋物線的方程;
(2)設(shè)直線l為:x=my+1,與拋物線聯(lián)立,得到韋達(dá)定理,結(jié)合中點(diǎn)坐標(biāo),即得解m,再利用|AB|=x+x'+p,即得解弦長(zhǎng).
(1)由拋物線的準(zhǔn)線得:1,∴p=2,所以拋物線的方程為:y2=4x;
(2)由(1)得焦點(diǎn)F(1,0),又由題意得,顯然直線的斜率不為零,
設(shè)直線l為:x=my+1,A(x,y),B(x',y'),
聯(lián)立直線l與拋物線的方程得:
y2﹣4my﹣4=0,
y+y'=4m,x+x'=m(y+y')+2=4m2+2,
由題意得:4m2+2=26=12,
∴|AB|=x+x'+p=12+2=14,
所以弦長(zhǎng)|AB|為14.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)生對(duì)食堂用餐的滿意度,從全校在食堂用餐的3000名學(xué)生中,隨機(jī)抽取100名學(xué)生對(duì)食堂用餐的滿意度進(jìn)行評(píng)分.根據(jù)學(xué)生對(duì)食堂用餐滿意度的評(píng)分,得到如圖所示的率分布直方圖,
(1)求頻率分布直方圖中的值
(2)規(guī)定:學(xué)生對(duì)食堂用餐滿意度的評(píng)分不低于80分為“滿意”,試估計(jì)該校在食堂用餐的3000名學(xué)生中“滿意”的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】貴陽(yáng)河濱公園是市民休閑游玩的重要場(chǎng)所,某校社團(tuán)針對(duì)“公園環(huán)境評(píng)價(jià)”隨機(jī)對(duì)位市民進(jìn)行問卷調(diào)查打分(滿分100分)得莖葉圖如下:
(1)寫出女性打分的中位數(shù)和眾數(shù);
(2)從打分在分以下(不含分)的市民中隨機(jī)請(qǐng)人進(jìn)一步提建議,求這人都是男性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在定義域上的導(dǎo)函數(shù)為,若函數(shù)沒有零點(diǎn),且,當(dāng)在上與在上的單調(diào)性相同時(shí),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形,沿對(duì)角線將折起,使得點(diǎn)在平面上的射影恰好落在邊上.
(1)求證:平面平面;
(2)當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a1nx﹣ax+1(a∈R且a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:(n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下命題:
(1)若:;:,則為真,為假,為真
(2)“”是“曲線表示橢圓”的充要條件
(3)命題“若,則”的否命題為:“若,則”
(4)如果將一組數(shù)據(jù)中的每一個(gè)數(shù)都加上同一個(gè)非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變;
則正確命題有( )個(gè)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直角梯形ABCD中,已知,,,平面ABCD.
(1)求證:平面VAC;
(2)若,求CV與平面VAD所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線:,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),點(diǎn)在直線上,且.
(Ⅰ)求點(diǎn)的極坐標(biāo);
(Ⅱ)若點(diǎn)是曲線上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com