【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,A為橢圓C的右頂點(diǎn),以A為圓心的圓與直線相交于P, 兩點(diǎn),且
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程和圓A的方程;
(Ⅱ)不過(guò)原點(diǎn)的直線與橢圓C交于M、N兩點(diǎn),已知OM,直線,ON的斜率成等比數(shù)列,記以O(shè)M、ON為直徑的圓的面積分別為S1、S2,試探究的值是否為定值,若是,求出此值;若不是,說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),是函數(shù)的圖像上任意不同的兩點(diǎn),依據(jù)圖像可知,線段總是位于兩點(diǎn)之間函數(shù)圖像的上方,因此有結(jié)論成立,運(yùn)用類(lèi)比的思想方法可知,若點(diǎn),是函數(shù)的圖像上任意不同的兩點(diǎn),則類(lèi)似地有_________成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB, 為棱PC上一點(diǎn).
(Ⅰ)若點(diǎn)是PC的中點(diǎn),證明:B∥平面PAD;
(Ⅱ) 試確定的值使得二面角-BD-P為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,,//,,為正三角形. 若,且與底面所成角的正切值為.
(1)證明:平面平面;
(2)是線段上一點(diǎn),記(),是否存在實(shí)數(shù),使二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿(mǎn)足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))
(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為4840,畫(huà)面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫(huà)面高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng),設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(單位:億元)的數(shù)據(jù)如下:
(1)求關(guān)于的線性回歸方程;
(2)2018年城鄉(xiāng)居民儲(chǔ)蓄存款前五名中,有三男和兩女.現(xiàn)從這5人中隨機(jī)選出2人參加某訪談節(jié)目,求選中的2人性別不同的概率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)務(wù)院批準(zhǔn)從2009年起,將每年8月8日設(shè)置為“全民健身日”,為響應(yīng)國(guó)家號(hào)召,各地利用已有土地資源建設(shè)健身場(chǎng)所.如圖,有一個(gè)長(zhǎng)方形地塊,邊為,為.地塊的一角是草坪(圖中陰影部分),其邊緣線是以直線為對(duì)稱(chēng)軸,以為頂點(diǎn)的拋物線的一部分.現(xiàn)要鋪設(shè)一條過(guò)邊緣線上一點(diǎn)的直線型隔離帶,,分別在邊,上(隔離帶不能穿越草坪,且占地面積忽略不計(jì)),將隔離出的△作為健身場(chǎng)所.則△的面積為的最大值為____________(單位:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(Ⅰ)若有極小值且極小值為0 ,求的值;
(Ⅱ)當(dāng)時(shí),, 求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com