【題目】中,角、、所對的邊分別為、、.已知.

(1)求

(2)若,求.

【答案】(1)22.

【解析】

試題分析:(1)首先利用正弦定理化已知條件等式中的邊為角,然后利用兩角和的正弦公式結(jié)合三角形內(nèi)角和定理求得的值,從而求得角的大小;2首先結(jié)合(1)利用余弦定理求得的關(guān)系式,然后根據(jù)三角形面積公式求得的值.

試題解析:(1)由正弦定理得:

2sinBcosB=sinAcosAcosB-sinBsin2AsinCcosA=sinAcos(AB)sinCcosA

=-sinAcosCsinCcosA=-sin(A+C)=-sinB,

sinB0,

cosB=-,B=. 6

(2)b2=a2+c22accosB,b=a,cosB=-

c2+ac6a2=0,解得c=2a, 10

由SABCacsinB=a22,得a=2. 12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[11]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種儀器隨著使用年限的增加,每年的維護費相應(yīng)增加. 現(xiàn)對一批該儀器進行調(diào)查,得到這批儀器自購入使用之日起,前5年平均每臺儀器每年的維護費用大致如下表:

年份(年)

1

2

3

4

5

維護費(萬元)

0.7

1.2

1.6

2.1

2.4

(1)根據(jù)表中所給數(shù)據(jù),試建立關(guān)于的線性回歸方程;

(2)若該儀器的價格是每臺12萬元,你認為應(yīng)該使用滿五年換一次儀器,還是應(yīng)該使用滿八年換一次儀器?并說明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,在底面ABCD中,AD//BC,ADCD,QAD的中點,M是棱PC的中點,PA=PD=2,BC=AD=1,CD=,PB=

Ⅰ)求證:平面PAD⊥底面ABCD;

Ⅱ)試求三棱錐B-PQM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,2017年國慶中秋假日期間,黔東南州共接待游客590.23萬人次,實現(xiàn)旅游收入48.67億元,同比分別增長44.57%、55.22%.旅游公司規(guī)定:若公司導(dǎo)游接待旅客,旅游年總收入不低于40(單位:百萬元),則稱為優(yōu)秀導(dǎo)游.經(jīng)驗表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游100名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:

分組

頻數(shù)

18

49

24

5

Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?

Ⅱ)若導(dǎo)游的獎金(單位:萬元),與其一年內(nèi)旅游總收入(單位:百萬元)之間的關(guān)系為,求甲公司導(dǎo)游的年平均獎金;

Ⅲ)從甲、乙兩家公司旅游收入在的總?cè)藬?shù)中,用分層抽樣的方法隨機抽取6人進行表彰,其中有兩名導(dǎo)游代表旅游行業(yè)去參加座談,求參加座談的導(dǎo)游中有乙公司導(dǎo)游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了解居民參加體育鍛煉的情況,從該社區(qū)隨機抽取了18名男性居民和12名女性居民,對他們參加體育鍛煉的情況進行問卷調(diào)查.現(xiàn)按是否參加體育鍛煉將居民分成兩類:甲類(不參加體育鍛煉)、乙類(參加體育鍛煉),結(jié)果如下表:

甲類

乙類

男性居民

3

15

女性居民

6

6

(Ⅰ)根據(jù)上表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表;

男性居民

女性居民

總計

不參加體育鍛煉

參加體育鍛煉

總計

(Ⅱ)通過計算判斷是否有90%的把握認為參加體育鍛煉與否與性別有關(guān)?

附:,其中.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖南(長郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對數(shù)的底數(shù), ).

)若函數(shù)的極值點只有一個,求實數(shù)的取值范圍;

)當時,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立來該租車點租車騎游(各租一車一次),設(shè)甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為;兩人租車時間都不會超過四小時.

(1)求出甲、乙兩人所付租車費用相同的概率;

(2)求甲、乙兩人所付的租車費用之和為4元時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為二次函數(shù),且

(1)求f(x)的表達式;

(2)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

同步練習冊答案