【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),其中為直線的傾斜角.以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,求兩點間的距離的值.

【答案】(1),C:;(2)8

【解析】

(1)用消參法可得直線的普通方程,由公式可化曲線的極坐標方程為直角坐標方程;

(2)的坐標化為直角坐標,寫出直線的標準參數(shù)方程為參數(shù)),代入曲線C的直角坐標方程,應(yīng)用韋達定理,再由公式得弦長.

(1)消去參數(shù)得:; 曲線C的方程化為,直角坐標方程為;

(2)∵點的極坐標為,∴點的直角坐標為

,直線的傾斜角.∴直線的參數(shù)為為參數(shù)).

代入,得

設(shè)兩點對應(yīng)的參數(shù)為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中有大小形狀完全相同的個乒乓球,乒乓球上分別印有數(shù)字,小明和小芳分別從袋子中摸出一個球(不放回),看誰摸出來的球上的數(shù)字大.小明先摸出一球說:“我不能肯定我們兩人的球上誰的數(shù)字大.”然后小芳摸出一球說:“我也不能肯定我們兩人的球上誰的數(shù)字大.”那么小芳摸出來的球上的數(shù)字是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n為正整數(shù)集合,n對于集合A中的任意元素,記.

1)當時,若,,求的值;

2)當時,設(shè)BA的子集,且滿足:對于B中的任意元素αβ,當αβ相同時,是奇數(shù);當αβ不同時,是偶數(shù).求集合B中元素個數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性及極值;

(Ⅱ)若不等式內(nèi)恒成立,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當時,若函數(shù)存在與直線平行的切線,求實數(shù)的取值范圍;

(2)當時,,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:

甲:8281,7978,95,88,93,84

乙:9295,80,7583,80,90,85

1)用莖葉圖表示這兩組數(shù)據(jù);

2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標準差中選兩個)考慮,你認為選派哪位學(xué)生參加合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】麻團又叫煎堆,呈球形,華北地區(qū)稱麻團,是一種古老的中華傳統(tǒng)特色油炸面食,寓意團圓。制作時以糯米粉團炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個長方體形狀的紙盒中恰好放入4個球形的麻團,它們彼此相切,同時與長方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長方體紙盒的表面積為576 則一個麻團的體積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知右焦點為的橢圓關(guān)于直線對稱的圖形過坐標原點.

是橢圓的左頂點,斜率為的直線交,兩點,點上,.

(Ⅰ)當時,求的面積;

(Ⅱ)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】被嘉定著名學(xué)者錢大昕贊譽為“國朝算學(xué)第一”的清朝數(shù)學(xué)家梅文鼎曾創(chuàng)造出一類“方燈體”,“燈者立方去其八角也”,如圖所示,在棱長為的正方體中,點為棱上的四等分點.

1)求該方燈體的體積;

2)求直線的所成角;

3)求直線和平面的所成角.

查看答案和解析>>

同步練習(xí)冊答案