精英家教網 > 高中數學 > 題目詳情

V為全體平面向量構成的集合,若映射f
V→R滿足:
對任意向量a=(x1,y1)∈Vb=(x2y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),則稱映射f具有性質p.
現(xiàn)給出如下映射:
f1V→R,f1(m)=xy,m=(xy)∈V;
f2V→R,f2(m)=x2y,m=(x,y)∈V;
f3V→R,f3(m)=xy+1,m=(x,y)∈V.
分析映射①②③是否具有性質p.

①具有性質p②不具有性質p. ③具有性質p.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓(a>b>0)的左焦為F,右頂點為A,上頂點為B,O為坐標原點,M為橢圓上任意一點,過F,B,A三點的圓的圓心為(p,q).
(1).當p+q≤0時,求橢圓的離心率的取值范圍;
(2).若D(b+1,0),在(1)的條件下,當橢圓的離心率最小時,的最小值為,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數f(x)=2x2-2ax+3在區(qū)間[-1,1]上最小值記為g(a).
(1)求g(a)的函數表達式;
(2)求g(a)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是否存在實數a,使函數f(x)=loga(ax2-x)在區(qū)間[2,4]上是增函數?如果存在,說明a可取哪些值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)=ax2+bx(a、b為常數,且a≠0)滿足條件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在實數m、n(m<n),使f(x)定義域和值域分別為[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)在R上是減函數.
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,其中是常數.
(1)若是奇函數,求的值;
(2)求證:的圖像上不存在兩點A、B,使得直線AB平行于軸.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,,其中.
(I) 若,求的值;    (II) 若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數y=f(x)的定義域是[0,2],求函數g(x)=的定義域.

查看答案和解析>>

同步練習冊答案