【題目】如圖,矩形中, , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:(I)連接于點(diǎn),根據(jù)對(duì)應(yīng)邊成比例可證得兩個(gè)直角三角形相似,由此證得,而,故平面,所以.(II)由(I)知平面,以為原點(diǎn)聯(lián)立空間直角坐標(biāo)系,利用平面和平面的方向量,計(jì)算兩個(gè)半平面所成角的余弦值.

試題解析:

(Ⅰ)連接于點(diǎn),依題意得,所以 ,

所以,所以,所以,

,又 ,平面.

所以平面.

平面,所以.

(Ⅱ)因?yàn)槠矫?/span>平面

由(Ⅰ)知, 平面,

為原點(diǎn),建立空間直角坐標(biāo)系如圖所示.

中,易得, ,

所以, ,

,

設(shè)平面的法向量,則,即,解得

,得,

顯然平面的一個(gè)法向量為.

所以 ,所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:ab0)過(guò)點(diǎn)E1),其左、右頂點(diǎn)分別為AB,左、右焦點(diǎn)為F1,F2,其中F1,0).

1)求橢圓C的方程:

2)設(shè)Mx0,y0)為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),MNAB于點(diǎn)N,直線lx0x+2y0y40,設(shè)過(guò)點(diǎn)Ax軸垂直的直線與直線l交于點(diǎn)P,證明:直線BP經(jīng)過(guò)線段MN的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體中,四邊形是邊長(zhǎng)為2的正方形,平面.

(1)設(shè)BDAC的交點(diǎn)為O,求證:平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),來(lái)自一帶一路沿線的20國(guó)青年評(píng)選出了中國(guó)的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購(gòu).其中共享單車既響應(yīng)綠色出行號(hào)召,節(jié)能減排,保護(hù)環(huán)境,又方便人們短距離出行,增強(qiáng)靈活性.某城市試投放3個(gè)品牌的共享單車分別為紅車、黃車、藍(lán)車,三種車的計(jì)費(fèi)標(biāo)準(zhǔn)均為每15分鐘(不足15分鐘按15分鐘計(jì))1元,按每日累計(jì)時(shí)長(zhǎng)結(jié)算費(fèi)用,例如某人某日共使用了24分鐘,系統(tǒng)計(jì)時(shí)為30分鐘.A同學(xué)統(tǒng)計(jì)了他1個(gè)月(按30天計(jì))每天使用共享單車的時(shí)長(zhǎng)如莖葉圖所示,不考慮每月自然因素和社會(huì)因素的影響,用頻率近似代替概率.設(shè)A同學(xué)每天消費(fèi)元.

1)求的分布列及數(shù)學(xué)期望;

2)各品牌為推廣用戶使用,推出APP注冊(cè)會(huì)員的優(yōu)惠活動(dòng):紅車月功能使用費(fèi)8元,每天消費(fèi)打5折;黃車月功能使用費(fèi)20元,每天前15分鐘免費(fèi),之后消費(fèi)打8折;藍(lán)車月功能使用費(fèi)45元,每月使用22小時(shí)之內(nèi)免費(fèi),超出部分按每15分鐘1元計(jì)費(fèi).設(shè)分別為紅車,黃車,藍(lán)車的月消費(fèi),寫出的函數(shù)關(guān)系式,參考(1)的結(jié)果,A同學(xué)下個(gè)月選擇其中一個(gè)注冊(cè)會(huì)員,他選哪個(gè)費(fèi)用最低?

3)該城市計(jì)劃3個(gè)品牌的共享單車共3000輛正式投入使用,為節(jié)約居民開支,隨機(jī)調(diào)查了100名用戶一周的平均使用時(shí)長(zhǎng)如下表:

時(shí)長(zhǎng)

(015]

(15,30]

(3045]

(45,60]

人數(shù)

16

45

34

5

在(2)的活動(dòng)條件下,每個(gè)品牌各應(yīng)該投放多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】呼和浩特市地鐵一號(hào)線于20191229日開始正式運(yùn)營(yíng)有關(guān)部門通過(guò)價(jià)格聽證會(huì),擬定地鐵票價(jià)后又進(jìn)行了一次調(diào)查.調(diào)查隨機(jī)抽查了50人,他們的月收入情況與對(duì)地鐵票價(jià)格態(tài)度如下表:

月收入(單位:百元)

認(rèn)為票價(jià)合理的人數(shù)

1

2

3

5

3

4

認(rèn)為票價(jià)偏高的人數(shù)

4

8

12

5

2

1

1)若以區(qū)間的中點(diǎn)值作為月收入在該區(qū)間內(nèi)人的人均月收入求參與調(diào)查的人員中認(rèn)為票價(jià)合理者的月平均收入與認(rèn)為票價(jià)偏高者的月平均收入的差是多少(結(jié)果保留2位小數(shù));

2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表分析是否有的把握認(rèn)為月收入以5500元為分界點(diǎn)對(duì)地鐵票價(jià)的態(tài)度有差異

月收入不低于5500元人數(shù)

月收入低于5500元人數(shù)

合計(jì)

認(rèn)為票價(jià)偏高者

認(rèn)為票價(jià)合理者

合計(jì)

附:

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.

1)求拋物線的方程;

2)若過(guò)點(diǎn)作互相垂直的兩條直線,,與拋物線交于兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,已知,成等差數(shù)列,且,

1)求數(shù)列的通項(xiàng)公式;

2)記,證明:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過(guò)中心,且,

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)直線y=﹣1上的動(dòng)點(diǎn)Aa,﹣1)作拋物線yx2的兩切線AP,AQP,Q為切點(diǎn).

1)若切線AP,AQ的斜率分別為k1k2,求證:k1k2為定值.

2)求證:直線PQ過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案