【題目】設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(﹣1)=(
A.3
B.1
C.﹣1
D.﹣3

【答案】D
【解析】解:因為f(x)為定義在R上的奇函數(shù),
所以f(0)=20+2×0+b=0,
解得b=﹣1,
所以當(dāng)x≥0時,f(x)=2x+2x﹣1,
又因為f(x)為定義在R上的奇函數(shù),
所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,
故選D.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)奇偶性的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},則(A∩B)∪C=(
A.{3}
B.{3,7,8}
C.{1,3,7,8}
D.{1,3,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}中,a4=2,a5=5,則數(shù)列{lgan}的前8項和等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從班委會5名成員中選出3名,分別擔(dān)任班級學(xué)習(xí)委員、文娛委員與體育委員,其中甲、乙二人不能擔(dān)任文娛委員,則不同的選法共有種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(
A.已知兩個平面α,β,若兩條異面直線m,n滿足mα,nβ且m∥β,n∥α,則α∥β
B.已知a∈R,則“a<1”是“|x﹣2|+|x|>a”恒成立的必要不充分條件
C.設(shè)p,q是兩個命題,若¬(p∧q)是假命題,則p,q均為真命題
D.命題p:“x∈R,使得x2+x+1<0”,則¬p:“x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若loga3<1,則a取值范圍是(
A.a>3
B.1<a<3
C.0<a<1
D.a>3或0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足Sn=﹣n2+7n(n∈N*).則數(shù)列{an}的通項公式是an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是(
A.命題“若am2<bm2 , 則a<b”的逆命題是真命題
B.命題“存在x∈R,x2﹣x>0”的否定是:“任意x∈R,x2﹣x≤0”
C.命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D.已知x∈R,則“x>1”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:x2+y2=1及以下3個函數(shù):①f(x)=xcosx;②f(x)=tanx;③f(x)=xsinx.其中圖象能等分圓O面積的函數(shù)有(
A.3個
B.2個
C.1個
D.0個

查看答案和解析>>

同步練習(xí)冊答案