等差數(shù)列{an}中,a1=1,a7=4,在等比數(shù)列{bn}中,b1=6,b2=a3,則滿足bna26<1的最小正整數(shù)n是   .

6

解析試題分析:因為等差數(shù)列{an}中,a1=1,a7=4,那么可知1+6d=4,d=,
∵數(shù)列{bn}是等比數(shù)列,且b1=6,b2=a3,∴6q=1+2×,解得q=,因為∵bna26<1,
即可知

故最小的正整數(shù)為6,故答案為6.
考點:本題考查數(shù)列和不等式的綜合。
點評:該試題考查等差數(shù)列、等比數(shù)列的基本量、通項,對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

在數(shù)列中,>0,若,,則該數(shù)列的通項____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知各項為正的數(shù)列中,),則            .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

數(shù)列中,,若存在實數(shù),使得數(shù)列為等差數(shù)列,則=        

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知數(shù)列{}的首項=2,,數(shù)列{}通項公式為          

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在數(shù)列=     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在等差數(shù)列中,,前項和為,則=       .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知等差數(shù)列的首項及公差都是整數(shù),前項和為,若,設的結果為     。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

兩個等差數(shù)列 則­­=___________. 

查看答案和解析>>

同步練習冊答案