【題目】已知數(shù)列的各項(xiàng)均為非零實(shí)數(shù),其前項(xiàng)和為,且.
(1)若,求的值;
(2)若,求證:數(shù)列是等差數(shù)列;
(3)若,,是否存在實(shí)數(shù),使得對任意正整數(shù)恒成立,若存在,求實(shí)數(shù)的取值范圍,若不存在,說明理由.
【答案】(1)(2)見解析(3)不存在滿足條件的實(shí)數(shù),見解析
【解析】
(1)由題得,所以,得,即得的值;
(2)利用累乘法得到,所以數(shù)列是等差數(shù)列,首項(xiàng)為,公差為,求出,,所以,再證明數(shù)列是等差數(shù)列;
(3)原題等價于,不妨設(shè),即對任意正整數(shù)()恒成立,即對任意正整數(shù)恒成立,再證明當(dāng)且時,,即得解.
(1)解:由,令,得,
因?yàn)閿?shù)列的各項(xiàng)均為非零實(shí)數(shù),所以,
所以,
所以.
(2)證明:由得:
,……,,相乘得:,
因?yàn)閿?shù)列的各項(xiàng)均為非零實(shí)數(shù),所以,
當(dāng)時:,所以,
即,
即,
因?yàn)?/span>,所以,
所以數(shù)列是等差數(shù)列,首項(xiàng)為,公差為,
所以,所以,
所以,,所以,
所以,所以數(shù)列是等差數(shù)列.
(3) 解:當(dāng),時,由(2)知,所以,即,
不妨設(shè),則,,所以,
即對任意正整數(shù)()恒成立,
則,即對任意正整數(shù)恒成立,
設(shè),
時,;時,;
時,;時,;
時,;
當(dāng)時,,
所以時,.
所以時,,
令或(舍去).
所以當(dāng)且時,,
所以不存在滿足條件的實(shí)數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線過點(diǎn),傾斜角為.以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(1)寫出直線的參數(shù)方程及曲線的直角坐標(biāo)方程;
(2)若與相交于,兩點(diǎn),為線段的中點(diǎn),且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長等于2正方形中,點(diǎn)Q是中點(diǎn),點(diǎn)M,N分別在線段上移動(M不與A,B重合,N不與C,D重合),且,沿著將四邊形折起,使得面面,則三棱錐體積的最大值為________;當(dāng)三棱錐體積最大時,其外接球的表面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實(shí)源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”. 為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須相鄰安排的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy上取兩個定點(diǎn)A1(,0),A2(,0),再取兩個動點(diǎn)N1(0,m),N2(0,n),且mn=2.
(1)求直線A1N1與A2N2交點(diǎn)M的軌跡C的方程;
(2)過R(3,0)的直線與軌跡C交于P,Q,過P作PN⊥x軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若(λ>1),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面平面,為正三角形,為線段的中點(diǎn).
(1)證明:平面平面;
(2)若與平面所成角的大小為60°,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),,C的離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知不經(jīng)過點(diǎn)A的直線交橢圓C于M,N兩點(diǎn),線段MN的中點(diǎn)為B,若,求證:直線l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(s為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,,直線與曲線C交于A,B兩點(diǎn).
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)P的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點(diǎn)的極坐標(biāo)是,曲線的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線經(jīng)過點(diǎn).
(1)若時,寫出直線和曲線的直角坐標(biāo)方程;
(2)若直線和曲線相交于不同的兩點(diǎn),求線段的中點(diǎn)的在直角坐標(biāo)系中的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com