已知四面體ABCD的各棱長均為2,一動點P由點B出發(fā),沿表面經(jīng)過△ACD的中心后到達AD中點,則點P行走的最短路程是( 。
A、
5
3
3
B、
4
3
3
C、
3
D、其他
分析:設△ACD的中心為G,AD中點為H,點P行走的最短路程是BG+GH,利用等邊三角形中心的性質及勾股定理,求出
BG 和GH 的值.
解答:精英家教網(wǎng)解:如圖展開:設△ACD的中心為G,AD中點為H,點P行走的最短路程是BG+GH,
 由等邊三角形的性質得 AG=
2
3
×
3
2
×2=
2
3
3
,BG=
AB2+AG2
=
4+
12
9
=
4
3
3

GH=
AG2-AH2
=
4
3
-1
=
3
3
,
∴點P行走的最短路程是BG+GH=
5
3
3

故選A.
點評:本題考查棱錐的結構特征,等邊三角形的中心的性質、勾股定理的應用,體現(xiàn)了數(shù)形結合及轉化的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知四面體ABCD的六條棱長都是1,則直線AD與平面ABC的夾角的余弦值為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的周長為l,面積為S,則△ABC的內(nèi)切圓半徑為r=
2S
l
.將此結論類比到空間,已知四面體ABCD的表面積為S,體積為V,則四面體ABCD的內(nèi)切球的半徑R=
3V
S
3V
S

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四面體ABCD的四個面均為銳角三角形,EFGH分別是邊AB,BC,CD,DA上的點,BD||平面EFGH,且EH=FG.
(1)求證:HG||平面ABC
(2)請在平面ABD內(nèi)過點E做一條線段垂直于AC,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三下學期開學質量檢測數(shù)學試卷 題型:解答題

(本小題滿分14分)如圖,已知四面體ABCD的四個面均為銳角三角形,E、F、G、H分別為邊AB、BC、CD、DA上的點,BD∥平面EFGH,且EH=FG.

 

 

(1) 求證:HG∥平面ABC;

(2) 請在面ABD內(nèi)過點E作一條線段垂直于AC,并給出證明.

 

查看答案和解析>>

同步練習冊答案