【題目】若函數(shù)在其定義域上恰有兩個(gè)零點(diǎn),則正實(shí)數(shù)a的值為_____.
【答案】
【解析】
當(dāng)x≤0時(shí),f(x)=x+2x,單調(diào)遞增,由f(﹣1)f(0)<0,可得f(x)在(﹣1,0)有且只有一個(gè)零點(diǎn);x>0時(shí),f(x)=ax﹣lnx有且只有一個(gè)零點(diǎn),即有a有且只有一個(gè)實(shí)根.令g(x),求出導(dǎo)數(shù),求得單調(diào)區(qū)間,極值,即可得到a的值.
當(dāng)x≤0時(shí),f(x)=x+2x,單調(diào)遞增,
f(﹣1)=﹣1+2﹣1<0,f(0)=1>0,
由零點(diǎn)存在定理,可得f(x)在(﹣1,0)有且只有一個(gè)零點(diǎn);
則由題意可得x>0時(shí),f(x)=ax﹣lnx有且只有一個(gè)零點(diǎn),
即有a有且只有一個(gè)實(shí)根.
令g(x),g′(x),
當(dāng)x>e時(shí),g′(x)<0,g(x)遞減;
當(dāng)0<x<e時(shí),g′(x)>0,g(x)遞增.
即有x=e處取得極大值,也為最大值,且為,當(dāng)x
如圖g(x)的圖象,當(dāng)直線y=a(a>0)與g(x)的圖象
只有一個(gè)交點(diǎn)時(shí),則a.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月,甲乙兩校的學(xué)生參加了某考試機(jī)構(gòu)舉行的大聯(lián)考,現(xiàn)從這兩校參加考試的學(xué)生數(shù)學(xué)成績(jī)?cè)?00分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如下的莖葉圖.
(1)試通過莖葉圖比較這40份試卷的兩校學(xué)生數(shù)學(xué)成績(jī)的中位數(shù);
(2)若把數(shù)學(xué)成績(jī)不低于135分的記作數(shù)學(xué)成績(jī)優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有90的把握認(rèn)為數(shù)學(xué)成績(jī)?cè)?00分及以上的學(xué)生中數(shù)學(xué)成績(jī)是否優(yōu)秀與所在學(xué)校有關(guān);
(3)若從這40名學(xué)生中選取數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生,用分層抽樣的方式從甲乙兩校中抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人分析其失分原因,求這3人中恰有2人是乙校學(xué)生的概率.
參考公式與臨界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過的直線與橢圓交于兩點(diǎn),且的周長(zhǎng)為
(1)求橢圓的方程;
(2)若直線與橢圓分別交于兩點(diǎn),且,試問點(diǎn)到直線的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)口袋中裝有5個(gè)黑球和3個(gè)白球,這些球除顏色外完全相同,從中摸出3個(gè)球,則摸出白球的個(gè)數(shù)多于黑球個(gè)數(shù)的概率為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,分別是棱上的點(diǎn)(點(diǎn)不同于點(diǎn)),且,為棱上的點(diǎn),且.
求證:(1)平面平面;
(2)平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃按月訂購(gòu)一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最高氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
Ⅰ求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;
Ⅱ設(shè)六月份一天銷售這種飲料的利潤(rùn)為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請(qǐng)判斷Y的數(shù)學(xué)期望是否在時(shí)取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點(diǎn)的直線:與橢圓交于兩點(diǎn),且與圓相切.試探究的周長(zhǎng)是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時(shí),解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com