【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左、右焦點(diǎn)分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)橢圓上一動(dòng)點(diǎn)的直線,過(guò)F2與x軸垂直的直線記為,右準(zhǔn)線記為;
①設(shè)直線與直線相交于點(diǎn)M,直線與直線相交于點(diǎn)N,證明恒為定值,并求此定值。
②若連接并延長(zhǎng)與直線相交于點(diǎn)Q,橢圓的右頂點(diǎn)A,設(shè)直線PA的斜率為,直線QA的斜率為,求的取值范圍.
【答案】(1) (2)① ②
【解析】
(1)利用橢圓的定義可知,再根據(jù)離心率求,即可寫(xiě)出橢圓方程(2)①求出M,N的坐標(biāo),利用兩點(diǎn)間距離公式,化簡(jiǎn)即可求出為定值②設(shè)點(diǎn)(),點(diǎn)Q,表示出 ,再利用點(diǎn)P在橢圓上,化為關(guān)于的函數(shù),即可求出范圍.
(1)由題意知 ,則 ,又 可得 ,
所以橢圓C的標(biāo)準(zhǔn)方程為.
(2)①M(fèi) N
②點(diǎn)(),點(diǎn)Q,
∵,,
∴==.
∵點(diǎn)P在橢圓C上, ∴,
∴==.
∵,
∴.
∴的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷在上的單調(diào)性并證明;
(2)若對(duì)任意,不等式恒成立,求的取值范圍;
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬(wàn)噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行規(guī)劃時(shí),準(zhǔn)備設(shè)計(jì)一個(gè)圓形的開(kāi)放式公園.為達(dá)到社會(huì)和經(jīng)濟(jì)效益雙豐收.園林公司進(jìn)行如下設(shè)計(jì),安排圓內(nèi)接四邊形作為綠化區(qū)域,其余作為市民活動(dòng)區(qū)域.其中區(qū)域種植花木后出售,區(qū)域種植草皮后出售,已知草皮每平方米售價(jià)為元,花木每平方米的售價(jià)是草皮每平方米售價(jià)的三倍. 若 km , km
(1)若 km ,求綠化區(qū)域的面積;
(2)設(shè),當(dāng)取何值時(shí),園林公司的總銷(xiāo)售金額最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測(cè)量可知邊界萬(wàn)米,萬(wàn)米,萬(wàn)米.
(1)請(qǐng)計(jì)算原棚戶區(qū)建筑用地的面積及的長(zhǎng);
(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請(qǐng)?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在封閉的平面區(qū)域D內(nèi)任意兩點(diǎn)的距離的最大值稱(chēng)為平面區(qū)域D的“直徑".已知銳角三角形的三個(gè)頂點(diǎn)A,B,C在半徑為1的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域D,則平面區(qū)域D的“直徑”是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,有,橢圓的離心率為;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知,過(guò)點(diǎn)作直線與橢圓交于不同兩點(diǎn),線段的中垂線為,線段的中點(diǎn)為點(diǎn),記與軸的交點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò)點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)平面上有兩點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),求的最小值;
(3)若是軸上的動(dòng)點(diǎn),分別切圓于兩點(diǎn),試問(wèn):直線是否恒過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)為所在的平面內(nèi),給出下列關(guān)系式:
①;
②;
③.
則點(diǎn)依次為的( )
A.內(nèi)心、重心、垂心B.重心、內(nèi)心、垂心C.重心、內(nèi)心、外心D.外心、垂心、重心
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com