【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

【答案】
(1)解:根據(jù)f(x)的圖象可得 T= × = ,∴ω=1.

根據(jù)五點法作圖可得 1× +φ= ,求得 φ=

再把(0,1)代入函數(shù)的解析式可得 Asin =1,求得A=2,故f(x)=2sin(x+ ).


(2)解:將函數(shù)y=f(x)的圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,

可得y=2sin(2x+ )的圖象;

再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)=2sin[2(x﹣ )+ ]=2sin(2x﹣ )的圖象.

令2kπ﹣ ≤2x﹣ ≤2kπ+ ,求得 kπ﹣ ≤x≤kπ+

故g(x)的增區(qū)間為[kπ﹣ ,kπ+ ],k∈z.


【解析】(1)由周期求出ω,由五點法作圖求出φ的值,再把(0,1)代入函數(shù)的解析式求得A的值,可得函數(shù)f(x)的解析式.(2)由題意根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,令2kπ﹣ ≤2x﹣ ≤2kπ+ ,求得x的范圍,可得g(x)的增區(qū)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】原命題:“ 為兩個實數(shù),若,則, 中至少有一個不小于1”,下列說法錯誤的是( )

A. 逆命題為:若, 中至少有一個不小于1,則,為假命題

B. 否命題為:若,則, 都小于1,為假命題

C. 逆否命題為:若 都小于1,則,為真命題

D. ”是“, 中至少有一個不小于1”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)求函數(shù)f(x)= (x<﹣1)的最大值,并求相應(yīng)的x的值.
(2)已知正數(shù)a,b滿足2a2+3b2=9,求a 的最大值并求此時a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , 設(shè)an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn , bn+1)在直線y=x+2上.
(1)求an , bn;
(2)若數(shù)列{bn}的前n項和為Bn , 比較 + +…+ 與1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68


(1)求回歸直線方程 = x+ ,其中 =﹣20, =
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入﹣成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校一個生物興趣小組對學(xué)校的人工湖中養(yǎng)殖的某種魚類進(jìn)行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8


(1)在給出的坐標(biāo)系中,畫出關(guān)于x,y兩個相關(guān)變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程
(3)預(yù)測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
(參考公式: =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為F1、F2 , P為C的右支上一點,且|PF2|=|F1F2|,則 等于(
A.24
B.48
C.50
D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢, 問:需日相逢.

查看答案和解析>>

同步練習(xí)冊答案