年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集3A講練習(xí)卷(解析版) 題型:選擇題
設(shè)實(shí)數(shù)x,y滿足則點(diǎn)(x,y)在圓面x2+y2≤內(nèi)部的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集1B講練習(xí)卷(解析版) 題型:選擇題
已知集合M={1,2,3},N={2,3,4},全集I={1,2,3,4,5},則圖所示的陰影部分表示的集合為( )
A.{1} B.{2,3} C.{4} D.{5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集19講練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和Sn=n2+1,數(shù)列{bn}是首項(xiàng)為1,公比為b的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集19講練習(xí)卷(解析版) 題型:選擇題
已知定義在R上的函數(shù)y=f(x)滿足下列三個(gè)條件:①對(duì)任意的x∈R都有f(x+2)=-f(x);②對(duì)于任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的圖像關(guān)于y軸對(duì)稱.下列結(jié)論中,正確的是( )
A.f(4.5)<f(6.5)<f(7)
B.f(4.5)<f(7)<f(6.5)
C.f(7)<f(4.5)<f(6.5)
D.f(7)<f(6.5)<f(4.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集18講練習(xí)卷(解析版) 題型:填空題
函數(shù)y=的值域是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集18講練習(xí)卷(解析版) 題型:選擇題
已知a>0,x,y滿足約束條件若z=2x+y的最小值為1,則a=( )
A. B. C.1 D.2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集17講練習(xí)卷(解析版) 題型:選擇題
根據(jù)一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)的散點(diǎn)圖分析存在線性相關(guān)關(guān)系,求得其回歸方程=0.85x-85.7,則在樣本點(diǎn)(165,57)處的殘差為( )
A.54.55 B.2.45 C.3.45 D.111.55
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集14講練習(xí)卷(解析版) 題型:選擇題
若雙曲線=1(a>0,b>0)與橢圓=1(m>b>0)的離心率之積大于1,則以a,b,m為邊長的三角形一定是( )
A.等腰三角形 B.直角三角形 C.銳角三角形 D.鈍角三角形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com