精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)已知橢圓短軸的一個端點,離心率.過作直線與橢圓交于另一點,與軸交于點不同于原點),點關于軸的對稱點為,直線軸于點
(Ⅰ)求橢圓的方程;
(Ⅱ)求 的值.
[]

(Ⅰ)由已知,. 所以橢圓方程為 . ---5分
(Ⅱ)設直線方程為.令,得
由方程組    可得 ,即
 
所以 ,所以
.所以
直線的方程為 .令,得
所以 =.              ---------------- 12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)已知點P(4,4),圓C與橢圓E:
有一個公共點A(3,1),F1F2分別是橢圓的左.右焦點,直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在直角坐標系中,橢圓的左、右焦點分別為. 其中也是拋物線的焦點,點在第一象限的交點,且
(Ⅰ)求的方程;
(Ⅱ)若過點的直線交于不同的兩點.之間,試求面積之比的取值范圍.(O為坐標原點)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓分別為頂點,F為焦點,過F作軸的垂線交橢圓于點C,且直線與直線OC平行.
(1)求橢圓的離心率;
(2)已知定點M(),為橢圓上的動點,若的重心軌跡經過點,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((本題滿分14分)
已知橢圓的兩個焦點,且橢圓短軸的兩個端點與構成正三角形.
(1)求橢圓的方程;
(2)過點(1,0)且與坐標軸不平行的直線與橢圓交于不同兩點P、Q,若在軸上存在定點E(,0),使恒為定值,求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓C的中心在原點,焦點在x軸上,左右焦點分別為F1,F2;且
在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A、B兩點,且△AF2B的面積為,求以F2為圓
心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線交曲線C于x軸上方兩個不同點P、Q,點P關于x軸的對稱點為M,設
(I)求,求直線的斜率k的取值范圍;
(II)求證:直線MQ過定點。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的長軸長、焦距和短軸長成等差數列,則橢圓的離心率為           (    )
              

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,正六邊形的兩個頂點、為橢圓的兩個
焦點,其余4個頂點在橢圓上,則該橢圓的離心率為_______.

查看答案和解析>>

同步練習冊答案