設(shè)平面向量,,函數(shù)。

)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;

)當,,的值.

 

【答案】

)值域是;單調(diào)增區(qū)間為;(.

【解析】

試題分析:根據(jù)的特點,利用平面向量的數(shù)量積的運算法則化簡,然后利用兩角和的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),從而確定出的解析式,

根據(jù)、數(shù)量積公式和三角函數(shù)恒等變換,求出,在根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)的值域;

根據(jù)正弦函數(shù)的單調(diào)區(qū)間為,列出不等式,求出不等式的解集即可得到的取值范圍即為的遞增區(qū)間;

根據(jù),代入的解析式中,得到的值,根據(jù)的范圍求出的范圍,利用同角三角函數(shù)間的基本關(guān)系求出的值,把所求的式子利用二倍角的正弦函數(shù)公式化簡,將的值代入即可求出值.

試題解析:依題意2分)

4分)

) 函數(shù)的值域是; (5分)

,解得7分)

所以函數(shù)的單調(diào)增區(qū)間為. 8分)

)由,

因為所以, 10分)

12分).

考點:1. 正弦函數(shù)的定義域和值域、正弦函數(shù)的單調(diào)性;2. 三角函數(shù)的恒等變換及化簡求值;3.平面向量數(shù)量積的運算.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年廣東省中山市高三第一學期期末考試文科數(shù)學試卷(解析版) 題型:解答題

設(shè)平面向量,,函數(shù).

)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;

)當,,的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省中山市華僑中學高考數(shù)學模擬試卷(文科)(解析版) 題型:解答題

設(shè)平面向量,,函數(shù)
①求函數(shù)f(x)的值域;
②求函數(shù)f(x)的單調(diào)增區(qū)間.
③當,且時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇期中題 題型:解答題

設(shè)平面向量,,函數(shù)
①求函數(shù)f(x)的值域;
②求函數(shù)f(x)的單調(diào)增區(qū)間.
③當,且時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省汕尾市陸豐市高一(下)第一次月考數(shù)學試卷(解析版) 題型:解答題

設(shè)平面向量,,函數(shù)f(x)=.求:
①求函數(shù)f(x)的值域;
②求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習冊答案