【題目】已知函數(shù).

(1)求函數(shù)的極值;

(2)當時,試比較的大小.

【答案】(1)在區(qū)間上單調(diào)遞減; 在區(qū)間上單調(diào)遞增;(2).

【解析】試題分析: (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可; (2)構(gòu)造函數(shù),根據(jù)判斷出函數(shù)在單調(diào)遞增, ,.

試題解析:(1)

在區(qū)間上單調(diào)遞減; 在區(qū)間上單調(diào)遞增

有極小值,無極大值.

(2)令,

單調(diào)遞增,

.

點睛:本題考查函數(shù)的單調(diào)性與極值問題,屬于中檔題目. 極值是指某一點附近函數(shù)值的比較,因此,同一函數(shù)在某一點的極大(小)值,可以比另一點的極小(大)值小(大);最大、最小值是指閉區(qū)間[a,b]上所有函數(shù)值的比較.因而在一般情況下,兩者是有區(qū)別的,極大(小)值不一定是最大(小)值,最大(小)值也不一定是極大(小)值,但如果連續(xù)函數(shù)在區(qū)間(a,b)內(nèi)只有一個極值,那么極大值就是最大值,極小值就是最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實行二級階梯式水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照 ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱臺中, 分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點, ).

(1)設(shè)中點為, ,求證: 平面;

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點,F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點,N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4 坐標系與參數(shù)方程

在直角坐標系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標系.

(1)寫出的極坐標方程,并將化為普通方程;

(2)若直線的極坐標方程為相交于兩點,

的面積(為圓的圓心).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某智能手機制作完成之后還需要依次通過三道嚴格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.

(1)求審核過程中只通過兩道程序的概率;

(2)現(xiàn)有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算下面各題
(1)求過點A(2,3),且垂直于直線3x+2y﹣1=0的直線方程;
(2)已知直線l過原點,且點M(5,0)到直線l的距離為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線)與軸交于點,動圓與直線相切,并且與圓相外切,

1)求動圓的圓心的軌跡的方程;

2)若過原點且傾斜角為的直線與曲線交于兩點,問是否存在以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蛋糕店每天做若干個生日蛋糕,每個制作成本為50元,當天以每個100元售出,若當天白天售不出,則當晚以30元/個價格作普通蛋糕低價售出,可以全部售完.

(1)若蛋糕店每天做20個生日蛋糕,求當天的利潤(單位:元)關(guān)于當天生日蛋糕的需求量(單位:個, )的函數(shù)關(guān)系;

(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個)整理得下表:

(ⅰ)假設(shè)蛋糕店在這100天內(nèi)每天制作20個生日蛋糕,求這100天的日利潤(單位:元)的平均數(shù);

(ⅱ)若蛋糕店一天制作20個生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當天利潤不少于900元的概率.

查看答案和解析>>

同步練習冊答案