【題目】已知命題p:“x[1,2], x2-lnx-a≥0”與命題q:“xR,x2+2ax-8-6a=0”都是真命題,求實(shí)數(shù)a的取值范圍.

【答案】 (-∞,-4][-2,]

【解析】

根據(jù)題意,命題p,利用恒成立問題方法轉(zhuǎn)化,求出a的取值范圍;

命題q,由一元二次方程的根的情況分析可得a的取值范圍,根據(jù)p、q都是真命題,將兩次求出的a的范圍求交集即可.

命題pa≤x2lnxx[1,2]上恒成立,令f(x)x2lnxf ′(x)x-

當(dāng)1<x<2時(shí),f′(x)>0,f(x)min=f(1)=.a≤. 當(dāng)a≤時(shí)p是真命題.,

命題q:Δ=4a2-4(-8-6a)≥0,a≥-2a≤-4.即當(dāng) a≥2a≤4時(shí),q是真命題,

綜上,a的取值范圍為(-∞,-4][-2,].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________

【答案】

【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時(shí),則平行AC直線即可故a=-2,當(dāng)a>0時(shí),則直線平行AB即可,故a=1

點(diǎn)睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個(gè)數(shù)為無數(shù)個(gè)時(shí)的條件是什么,然后根據(jù)幾何關(guān)系求解即可

型】填空
結(jié)束】
16

【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , 分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則 .若在, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a10,an+1an+6n+3,數(shù)列{bn}滿足bnn,則數(shù)列{bn}的最大項(xiàng)為第_____項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是棱長(zhǎng)為2的正方形,EAD的中點(diǎn),以CE為折痕把DEC折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且點(diǎn)P的射影O落在線段AC上.

1)求;

2)求幾何體PABCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為;

1)寫出曲線C的普通方程和直線l的參數(shù)方程;

2)設(shè)點(diǎn)Pm,0),若直線l與曲線C相交于A,B兩點(diǎn),且|PA||PB|1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C經(jīng)過點(diǎn),其焦點(diǎn)為FM為拋物線上除了原點(diǎn)外的任一點(diǎn),過M的直線lx軸、y軸分別交于A,B兩點(diǎn).

求拋物線C的方程以及焦點(diǎn)坐標(biāo);

的面積相等,證明直線l與拋物線C相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校的名高三學(xué)生參加了天一大聯(lián)考,為了分析此次聯(lián)考數(shù)學(xué)學(xué)科的情況,現(xiàn)隨機(jī)從中抽取名學(xué)生的數(shù)學(xué)成績(jī)(滿分:分),并繪制成如圖所示的莖葉圖.將成績(jī)低于分的稱為不及格,不低于分的稱為優(yōu)秀,其余的稱為良好”.根據(jù)樣本的數(shù)字特征估計(jì)總體的情況.

1)估算此次聯(lián)考該校高三學(xué)生的數(shù)學(xué)學(xué)科的平均成績(jī).

2)估算此次聯(lián)考該校高三學(xué)生數(shù)學(xué)成績(jī)不及格優(yōu)秀的人數(shù)各是多少.

3)在國(guó)家扶貧政策的倡導(dǎo)下,該地教育部門提出了教育扶貧活動(dòng),要求對(duì)此次數(shù)學(xué)成績(jī)不及格的學(xué)生分兩期進(jìn)行學(xué)業(yè)輔導(dǎo):一期由優(yōu)秀學(xué)生進(jìn)行一對(duì)一幫扶輔導(dǎo),二期由老師進(jìn)行集中輔導(dǎo).根據(jù)實(shí)踐總結(jié),優(yōu)秀學(xué)生進(jìn)行一對(duì)一輔導(dǎo)的轉(zhuǎn)化率為;老師集中輔導(dǎo)的轉(zhuǎn)化率為,試估算經(jīng)過兩期輔導(dǎo)后,該校高三學(xué)生中數(shù)學(xué)成績(jī)?nèi)匀徊患案竦娜藬?shù).

注:轉(zhuǎn)化率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是以為焦點(diǎn)的拋物線,是以直線的漸近線,以為一個(gè)焦點(diǎn)的雙曲線.

1)求雙曲線的標(biāo)準(zhǔn)方程;

2)若在第一象限有兩個(gè)公共點(diǎn),求的取值范圍,并求的最大值;

3)是否存在正數(shù),使得此時(shí)的重心恰好在雙曲線的漸近線上?如果存在,求出的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車零件加工廠為迎接國(guó)慶大促銷活動(dòng)預(yù)估國(guó)慶七天銷售量,該廠工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示,將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.

1)根據(jù)頻率分布直方圖估計(jì)該廠的日平均銷售量;(每組以中點(diǎn)值為代表)

2)求未來天內(nèi),連續(xù)天日銷售量不低于噸,另一天日銷售量低于噸的概率;

3)用表示未來天內(nèi)日銷售量不低于噸的天數(shù),求隨機(jī)變量的分布列、數(shù)學(xué)期望與方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案