【題目】如圖所示,使用紙板可以折疊粘貼制作一個(gè)形狀為正六棱柱形狀的花型鎖盒蓋的紙盒.

(1)求該紙盒的容積;
(2)如果有一張長為60cm,寬為40cm的矩形紙板,則利用這張紙板最多可以制作多少個(gè)這樣的紙盒(紙盒必須用一張紙板制成).

【答案】
(1)解:由已知可得:正六棱柱形狀的花型鎖盒蓋的紙盒底面棱長為2cm,高為3cm;

故紙盒的容積V=6× ×22×3=18 cm3


(2)解:由已知可得:制作一個(gè)紙盒,需要一張長2×5+0.5=10.5cm,寬3+3+3=9cm的矩形紙,

一張長為60cm,寬為40cm的矩形紙板最多可以制作23個(gè)這樣的紙盒,

如下圖所示:


【解析】(1)由已知可得:正六棱柱形狀的花型鎖盒蓋的紙盒底面棱長為2cm,高為3cm; 進(jìn)而可得該紙盒的容積;(2)制作一個(gè)紙盒,需要一張長2×5+0.5=10.5cm,寬3+3+3=9cm的矩形紙,進(jìn)而可得制作方案.
【考點(diǎn)精析】通過靈活運(yùn)用由三視圖求面積、體積,掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,過橢圓C上一點(diǎn)P(2,1)作x軸的垂線,垂足為Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點(diǎn)Q的直線l交橢圓C于點(diǎn)A,B,且3+=,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1﹣an=2,等比數(shù)列{bn}滿足b1=a1 , b4=a4+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:三棱錐P﹣ABC中,PA⊥底面ABC,若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為 .若M是BC的中點(diǎn),求:

(1)三棱錐P﹣ABC的體積;
(2)異面直線PM與AC所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結(jié)論正確的是(請(qǐng)將你認(rèn)為正確的序號(hào)都填上)
·(1)f(x)是R上的單調(diào)遞減函數(shù);
·(2)對(duì)于任意x∈R,f(x)+x>0恒成立;
·(3)對(duì)于任意a∈R,關(guān)于x的方程f(x)=a都有解;
·(4)f(x)存在反函數(shù)f1(x),且對(duì)于任意x∈R,總有f(x)=f1(x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項(xiàng)和Sn , 且滿足Sn+Sn2=2Sn1+2n1(n≥3).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn ;
(3)證明:對(duì)任意給定的m∈(0, ),均存在n0∈N+ , 使得當(dāng)n≥n0時(shí),(2)中的Tn>m恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共13分)

如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直。

EF//AC,AB=,CE=EF=1

)求證:AF//平面BDE;

)求證:CF⊥平面BDF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,且,,平面底面,的中點(diǎn), 是棱的中點(diǎn), ,.

(1)求證:平面BDM; (2)D到面PBC距離;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形,.

(1)證明:面;

(2)若與底面所成的角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案