已知數(shù)列滿足,.
(1)求的值,由此猜測的通項公式,并證明你的結(jié)論;
(2)證明:.
(1)猜想,證明詳見解析;(2)證明詳見解析.
解析試題分析:(1)根據(jù)遞推關系,依次附值即可得到的取值,進而作出猜想,然后再用數(shù)學歸納法證明即可;(2)先化簡,進而采用放縮法得到,進而將取1,2,3,……,時的不等式相乘即可證明不等式,然后構造函數(shù),確定該函數(shù)在區(qū)間上的單調(diào)性,進而得到在恒成立,從而可得即,問題得以證明.
(1)令可知,,
猜想,下用數(shù)學歸納法證明.
(1)時,顯然成立;
(2)假設時,命題成立.即.
當時,由題可知.
故時,命題也成立.
由(1)(2)可知,.
(2)證明:∵
∴
由于,可令函數(shù),則,令,得,給定區(qū)間,則有,則函數(shù)在上單調(diào)遞減,∴,即在恒成立,又,則有,即
所以.
考點:1.數(shù)學歸納法;2.數(shù)列不等式的證明——放縮法、構造函數(shù)法、數(shù)學歸納法等.
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前n項和滿足
(1)寫出數(shù)列的前3項、、;
(2)求數(shù)列的通項公式;
(3)證明對于任意的整數(shù)有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前項和為滿足,且.
(1)試求出的值;
(2)根據(jù)的值猜想出關于的表達式,并用數(shù)學歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知實數(shù),且按某種順序排列成等差數(shù)列.
(1)求實數(shù)的值;
(2)若等差數(shù)列的首項和公差都為,等比數(shù)列的首項和公比都為,數(shù)列和的前項和分別為,且,求滿足條件的自然數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前三項分別為,,,(其中為正常數(shù))。設。
(1)歸納出數(shù)列的通項公式,并證明數(shù)列不可能為等比數(shù)列;
(2)若=1,求的值;
(3)若=4,試證明:當時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com