【題目】數(shù)列{an}滿足a1=1, (n∈N+).
(1)證明:數(shù)列 是等差數(shù)列;
(2)求數(shù)列{an}的通項公式an;
(3)設bn=n(n+1)an , 求數(shù)列{bn}的前n項和Sn .
【答案】
(1)證明:由已知可得 ,
即 ,
即
∴數(shù)列 是公差為1的等差數(shù)列
(2)解:知 ,
∴
(3)解: 由(2)知bn=n2n
Sn=12+222+323++n2n
2Sn=122+223+…+(n﹣1)2n+n2n+1
相減得: =2n+1﹣2﹣n2n+1∴Sn=(n﹣1)2n+1+2
【解析】(1)由已知中 (n∈N+),我們易變形得: ,即 ,進而根據(jù)等差數(shù)列的定義,即可得到結(jié)論;(2)由(1)的結(jié)論,我們可以先求出數(shù)列 的通項公式,進一步得到數(shù)列{an}的通項公式an;(3)由(2)中數(shù)列{an}的通項公式,及bn=n(n+1)an , 我們易得到數(shù)列{bn}的通項公式,由于其通項公式由一個等差數(shù)列與一個等比數(shù)列相乘得到,故利用錯位相消法,即可求出數(shù)列{bn}的前n項和Sn .
【考點精析】利用數(shù)列的前n項和和數(shù)列的通項公式對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)的二次項系數(shù)為a(a<0),且1和3是函數(shù)y=f(x)+2x的兩個零點.若方程f(x)+6a=0有兩個相等的根,求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知+=1(a>>0)點A(1,)是離心率為的橢圓C:上的一點,斜率為的直線BD交橢圓C于B、D兩點,且A、B、D三點不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求△ABD面積的最大值;
(Ⅲ)設直線AB、AD的斜率分別為k1 , k2 , 試問:是否存在實數(shù)λ,使得k1+λk2=0成立?若存在,求出λ的值;否則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是正項等比數(shù)列,令Sn=lga1+lga2+…+lgan , n∈N* , 若存在互異的正整數(shù)m,n,使得Sm=Sn , 則Sm+n= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的年固定成本為150萬元,每生產(chǎn)千件,需另投入成本為 (萬元), .每件產(chǎn)品售價為500元.該新產(chǎn)品在市場上供不應求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)當年產(chǎn)量為多少千件時,該公司在這一新產(chǎn)品的生產(chǎn)中所獲利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標方程;
(2)點與點關(guān)于軸對稱,求曲線上的點到點的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第年與年銷量 (單位:萬件)之間的關(guān)系如表:
(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點圖;
(Ⅱ)根據(jù)(Ⅰ)中的散點圖擬合與的回歸模型,并用相關(guān)系數(shù)甲乙說明;
(Ⅲ)建立關(guān)于的回歸方程,預測第5年的銷售量約為多少?.
附注:參考數(shù)據(jù): , , .
參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘法估計公式分別為:
, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com