設(shè)是橢圓上一動(dòng)點(diǎn),是橢圓的兩個(gè)焦點(diǎn),則的最大值為                  .

4

解析試題分析:在中,設(shè),由余弦定理可知,結(jié)合橢圓的性質(zhì)化簡(jiǎn)得:;當(dāng)點(diǎn)位于橢圓的上頂點(diǎn)時(shí),有最大值,且,此時(shí)的最大值為4.
考點(diǎn):橢圓的定義及性質(zhì)、余弦定理、最值問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知F1,F(xiàn)2是橢圓的兩焦點(diǎn),過(guò)點(diǎn)F2的直線交橢圓于A,B兩點(diǎn).在
△AF1B中,若有兩邊之和是10,則第三邊的長(zhǎng)度為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若F1,F(xiàn)2是雙曲線與橢圓的共同的左、右焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且為等腰三角形,則該雙曲線的漸近線方程是          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知直線和直線,拋物線上一動(dòng)點(diǎn)到直線和直線的距離之和的最小值是          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知點(diǎn)P在拋物線上運(yùn)動(dòng),F(xiàn)為拋物線的焦點(diǎn),點(diǎn)M的坐標(biāo)為(3,2),當(dāng)PM+PF取最小值時(shí)點(diǎn)P的坐標(biāo)為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

過(guò)雙曲線=1的右焦點(diǎn),且平行于經(jīng)過(guò)一、三象限的漸近線的直線方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

雙曲線的漸近線方程為_(kāi)___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知點(diǎn)F是雙曲線=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為,(φ為參數(shù),a>b>0),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為ρsin (θ)=m(m為非零數(shù))與ρb.若直線l經(jīng)過(guò)橢圓C的焦點(diǎn),且與圓O相切,則橢圓C的離心率為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案