精英家教網 > 高中數學 > 題目詳情

如圖,已知平面內一動點到兩個定點、的距離之和為,線段的長為.

(1)求動點的軌跡
(2)當時,過點作直線與軌跡交于、兩點,且點在線段的上方,線段的垂直平分線為
①求的面積的最大值;
②軌跡上是否存在除外的兩點、關于直線對稱,請說明理由.

(1)參考解析;(2)①;②參考解析

解析試題分析:(1)由于c的大小沒確定,所以點A的軌跡,根據c的大小有三種情況.
(2)①由可得點A的軌跡方程為橢圓,求的面積的最大值即求出點A到直線距離的最大值.即點A在橢圓的上頂點上即可.本小題通過建立三角函數同樣可以求得三角形面積最大時的情況.
②當時,顯然存在除外的兩點、關于直線對稱.當直線AC不垂直于時,不存在除、外的兩點、關于直線對稱.通過假設存在,利用點差法即可得到,.由于H,M分別是兩條弦的中點,并且都被直線m平分.所以.由.所以不存在這樣的直線.
試題解析:(1)當時,軌跡是以、為焦點的橢圓3分
時,軌跡是線段4分
時,軌跡不存在5分
(2)以線段的中點為坐標原點,以所在直線為軸建立平面直角坐標系,
可得軌跡的方程為7分
①解法1:設表示點到線段的距離
,8分
要使的面積有最大值,只要有最大值
當點與橢圓的上頂點重合時,
的最大值為10分
解法2:在橢圓中,設,記
在橢圓上,由橢圓的定義得:

中,由余弦定理得:
配方,得:
從而

8分
根據橢圓的對稱性,當最大時,最大
當點與橢圓的上頂點重合時,
最大值為10分
②結論:當時,顯然存在除外的兩點、關于直線

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知為橢圓的左右焦點,點為其上一點,且有
.
(1)求橢圓的標準方程;
(2)過的直線與橢圓交于、兩點,過平行的直線與橢圓交于、兩點,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的中心和拋物線的頂點均為原點,、的焦點均在軸上,過的焦點F作直線,與交于A、B兩點,在上各取兩個點,將其坐標記錄于下表中:


(1)求的標準方程;
(2)若交于C、D兩點,的左焦點,求的最小值;
(3)點上的兩點,且,求證:為定值;反之,當為此定值時,是否成立?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

:的準線與軸交于點,焦點為;橢圓為焦點,離心率.設的一個交點.

(1)當時,求橢圓的方程.
(2)在(1)的條件下,直線的右焦點,與交于兩點,且等于的周長,求的方程.
(3)求所有正實數,使得的邊長是連續(xù)正整數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C:=1的離心率為,左焦點為F(-1,0),
(1)設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線L與橢圓C交于M,N兩點,若,求直線L的方程;
(2)橢圓C上是否存在三點P,E,G,使得SOPE=SOPG=SOEG

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓ab0)的離心率為,且過點().
(1)求橢圓E的方程;
(2)設直線l:y=kx+t與圓(1<R<2)相切于點A,且l與橢圓E只有一個公共點B.
①求證:;
②當R為何值時,取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

橢圓c:(a>b>0)的離心率為,過其右焦點F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設橢圓C的左右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一個交點為M,直線PB與橢圓的另一個交點為N,求證:直線MN經過一定點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的焦點為,點為拋物線上的一點,其縱坐標為.
(1)求拋物線的方程;
(2)設為拋物線上不同于的兩點,且,過兩點分別作拋物線的切線,記兩切線的交點為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

的內切圓與三邊的切點分別為,已知,內切圓圓心,設點A的軌跡為R.

(1)求R的方程;
(2)過點C的動直線m交曲線R于不同的兩點M,N,問在x軸上是否存在一定點Q(Q不與C重合),使恒成立,若求出Q點的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案