(2012•深圳一模)在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類似地,我們?cè)趶?fù)數(shù)集C上也可以定義一個(gè)稱為“序”的關(guān)系,記為“>”.定義如下:對(duì)于任意兩個(gè)復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i為虛數(shù)單位),“z1>z2”當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.下面命題為假命題的是(  )
分析:根據(jù)復(fù)數(shù)集C上定義的“序”的關(guān)系,對(duì)A,B,C,D逐個(gè)判斷,即可得到答案.
解答:解:設(shè)兩個(gè)復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i為虛數(shù)單位),
∵“a1>a2”或“a1=a2且b1>b2”?“z1>z2”,
∴對(duì)于A,z1=1+0i,z2=0+i,z3=0+0i,
顯然1=z1實(shí)部z2實(shí)部=z3實(shí)部=0,1=z2虛部z3虛部=0,
∴A正確;
對(duì)于B,同理可得當(dāng)z1>z2,z2>z3時(shí),z1>z3,故B正確;
對(duì)于C,∵z1>z2
z1實(shí)部z2實(shí)部z1實(shí)部=z2實(shí)部,z1虛部z2虛部
z1實(shí)部z2實(shí)部,(z1+z)實(shí)部>(z2+z)實(shí)部
z1實(shí)部=z2實(shí)部,z1虛部z2虛部,則(z1+z)實(shí)部=(z2+z)實(shí)部,(z1+z)虛部>(z2+z)虛部
故C正確;
對(duì)于D,按照新“序”的定義,復(fù)數(shù)z>0,不妨設(shè)z=i,z1=1+i,z2=1-i,顯然z1>z2,
而z•z1=i•(1+i)=-1+i,
z•z2=i•(1-i)=1-i,
顯然z•z1<z•z2,
故選D.
點(diǎn)評(píng):本題考查復(fù)數(shù)的基本概念,理解復(fù)數(shù)集C上定義的“序”及其應(yīng)用是關(guān)鍵,也是難點(diǎn),考查分析與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)隨機(jī)調(diào)查某社區(qū)80個(gè)人,以研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視 看書 合計(jì)
10 50 60
10 10 20
合計(jì) 20 60 80
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系”?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知點(diǎn)P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運(yùn)動(dòng),則z=x-y的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知等比數(shù)列{an}的第5項(xiàng)是二項(xiàng)式(
x
-
1
3x
)6
展開式的常數(shù)項(xiàng),則a3a7=
25
9
25
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)如圖,平行四邊形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設(shè)C在平面ABD上的射影為O.

(1)當(dāng)α為何值時(shí),三棱錐C-OAD的體積最大?最大值為多少?
(2)當(dāng)AD⊥BC時(shí),求α的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知數(shù)列{an}滿足:a1=
1
2
,an+1=
an
enan+e
,n∈N*
(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)設(shè)Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求證:Sn
n
n+1
Tne-n2

查看答案和解析>>

同步練習(xí)冊(cè)答案