【題目】設橢圓的一個焦點為,且橢圓過點為坐標原點,

1)求橢圓的標準方程;

2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點、,且?若存在,寫出該圓的方程,并求的最大值,若不存在說明理由.

【答案】1;(2)存在.

【解析】

1)根據(jù),且,解得答案.

2)設切線方程為,根據(jù)垂直得到,故,得到,,考慮和斜率不存在三種情況,分別計算得到答案.

1)根據(jù)題意:,且,解得,故標準方程為:.

2)假設存在圓滿足,當斜率存在時,設切線方程為.

,故.

,即.

,

.

,即,故,即.

,故,故.

當直線斜率不存在時,根據(jù)對稱性不妨取,

滿足.

綜上所述:存在使題目條件成立.

.

時,

時,,當,即時等號成立;

當斜率不存在時,易知

綜上所述:的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為

(Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;

(Ⅱ)設與曲線交于,兩點,與曲線交于,兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十二生肖,又稱十二屬相,中國古人拿十二種動物來配十二地支,組成子鼠、丑牛、寅虎、卯兔、辰龍、巳蛇、午馬、未羊、申猴、酉雞、戌狗、亥豬十二屬相,F(xiàn)有十二生肖吉祥物各一件,甲、乙、丙三位同學一次隨機抽取一件作為禮物,甲同學喜歡馬、牛,乙同學喜歡馬、龍、狗,丙同學除了鼠不喜歡外其他的都喜歡,則這三位同學抽取的禮物都喜歡的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上存在單調(diào)增區(qū)間,求實數(shù)的取值范圍;

2)若,證明:對于,總有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD與△ACD折成互相垂直的兩個平面后,某學生得出下列四個結論:

;

BAC60°;

三棱錐DABC是正三棱錐;

平面ADC的法向量和平面ABC的法向量互相垂直.

其中正確結論的序號是   .(請把正確結論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某創(chuàng)業(yè)者計劃在某旅游景區(qū)附近租賃一套農(nóng)房發(fā)展成特色農(nóng)家樂,為了確定未來發(fā)展方向此創(chuàng)業(yè)者對該景區(qū)附近五家農(nóng)家樂跟蹤調(diào)查了100天,這五家農(nóng)家樂的收費標準互不相同得到的統(tǒng)計數(shù)據(jù)如下表,x為收費標準(單位:/)t為入住天數(shù)(單位:),以頻率作為各自的入住率,收費標準x入住率”y的散點圖如圖

x

100

150

200

300

450

t

90

65

45

30

20

(1)若從以上五家農(nóng)家樂中隨機抽取兩家深人調(diào)查,記入住率超過0.6的農(nóng)家樂的個數(shù),求的概率分布列

(2)zlnx,由散點圖判斷哪個更合適于此模型(給出判斷即可不必說明理由)?并根據(jù)你的判斷結果求回歸方程(a,的結果精確到0.1)

(3)根據(jù)第(2)問所求的回歸方程,試估計收費標準為多少時,100天銷售額L最大?(100天銷售額L100×入住率×收費標準x)

參考數(shù)據(jù), ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案