【題目】已知函數(shù).

(1)若在定義域上為單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù),使得恒成立且有唯一零點(diǎn),若存在,求出滿足, 的值;若不存在,請(qǐng)說明理由.

【答案】(1);(2)

【解析】試題分析:(1)由在定義域上單調(diào)遞減,則恒成立,求的最大值小于等于0即可.

(2) 當(dāng)時(shí), ,∴恒成立,當(dāng)時(shí),由(1)知, 內(nèi)單調(diào)遞減,分 兩種情況討論函數(shù)的單調(diào)性和零點(diǎn).

試題解析:(1)由已知,函數(shù)的定義域?yàn)?/span>,

在定義域上單調(diào)遞減,則恒成立,

,所以,

當(dāng)時(shí), 單調(diào)遞增,當(dāng)時(shí), , 單調(diào)遞減.即內(nèi)單調(diào)遞增, 內(nèi)單調(diào)遞減,

所以

(2)當(dāng)時(shí), ,∴恒成立,

當(dāng)時(shí),由(1)知, 內(nèi)單調(diào)遞減,

(i)若

由(1)知, 內(nèi)單調(diào)遞減,

, 無零點(diǎn),不符合題意;

(ii)若,

設(shè) ,

所以,又

所以存在,使得,即,①

且當(dāng)故當(dāng)時(shí),有,當(dāng)時(shí),有,

內(nèi)單調(diào)遞增, 內(nèi)單調(diào)遞減,

由于恒成立,且有唯一零點(diǎn),∴.②

結(jié)合①,②知,③

聯(lián)立得

設(shè),則, ,

且當(dāng)時(shí), ,所以上有唯一零點(diǎn)

即滿足方程組③的唯一,且

設(shè) ,所以上單調(diào)遞增,

,

即滿足方程組③的,所以.

綜上所述,存在,使得恒成立且有唯一零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)由數(shù)字1、2、3、4、5、6、7組成無重復(fù)數(shù)字的七位數(shù)

求三個(gè)偶數(shù)必相鄰的七位數(shù)的個(gè)數(shù)及三個(gè)偶數(shù)互不相鄰的七位數(shù)的個(gè)數(shù)

(2)六本不同的書,分為三組,求在下列條件下各有多少種不同的分配方法?

(I)每組兩本

(II)一組一本,一組二本,一組三本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn)是曲線軸正半軸的交點(diǎn),點(diǎn)在曲線上,若直線的斜率滿足面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖,記成績(jī)不低于分者為“成績(jī)優(yōu)良”.

(1)分別計(jì)算甲、乙兩班個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個(gè)樣本中,成績(jī)?cè)?/span>分以下(不含分)的學(xué)生中任意選取人,求這人來自不同班級(jí)的概率;

(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

附:

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫出函數(shù), 的增區(qū)間;

(2)寫出函數(shù), 的解析式;

(3)若函數(shù), ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線ly=3x+3,求:

(1)點(diǎn)P(4,5)關(guān)于直線l的對(duì)稱點(diǎn)坐標(biāo);

(2)直線l1yx-2關(guān)于直線l的對(duì)稱直線的方程;

(3)直線l關(guān)于點(diǎn)A(3,2)的對(duì)稱直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動(dòng)情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表1所示

1


參加社團(tuán)活動(dòng)

不參加社團(tuán)活動(dòng)

合計(jì)

學(xué)習(xí)積極性高

17

8

25

學(xué)習(xí)積極性一般

5

20

25

合計(jì)

22

28

50

1)如果隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是多少?抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

2)運(yùn)用獨(dú)立檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況是否有關(guān)系?并說明理由.


005

001

0001


3841

6635

10828

查看答案和解析>>

同步練習(xí)冊(cè)答案