如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
Ⅰ)設(shè)橢圓的半焦距為c,由題意知: ,2a+2c=4(+1)
所以a=2,c=2,又=,因此b=2。
故 橢圓的標(biāo)準(zhǔn)方程為
由題意設(shè)等軸雙曲線的標(biāo)準(zhǔn)方程為,因為等軸雙曲線的頂點是橢圓的焦點。
所以m=2,因此 雙曲線的標(biāo)準(zhǔn)方程為 ……………4分
(Ⅱ)設(shè)A(,),B(),P(),
則=,。
因為點P在雙曲線上,所以。
因此,
即 ……………………8分
(Ⅲ)由于的方程為,將其代入橢圓方程得
由韋達(dá)定理得
同理可得.
則 ,又 ,所以 .
故
因此 存在,使恒成立.
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的
左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢
圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線和與橢圓的交點
分別 為和
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓的離心率為,且經(jīng)過點平行于的直線在軸上的截距為,與橢圓有A、B兩個
不同的交點
(Ⅰ) 求橢圓的方程;
(Ⅱ) 求的取值范圍;
(III)求證:直線、與軸始終圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度黑龍江龍東地區(qū)第一學(xué)期高二期末理科數(shù)學(xué)試卷 題型:解答題
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(Ⅲ)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com