已知是定義在上的奇函數(shù),當時,.
(1)求;
(2)求的解析式;
(3)若,求區(qū)間.

(1);(2);(3)區(qū)間.

解析試題分析:(1) ∵是奇函數(shù),,∴ ,∴,

(2)只需要求出 的解析式即可,利用奇函數(shù) ,所以設(shè),則 ,則 ,再與 的解析式和在一起,寫出分段函數(shù);
(3)本題是已知函數(shù)的值域求定義域問題,根據(jù)函數(shù)圖象可得上單調(diào)遞增,分別討論來求解,當時,解得;當時,解得 ;所以區(qū)間.
試題解析:(1)∵是奇函數(shù),
          3分
(2)設(shè),則,∴
為奇函數(shù),∴        5分
                            6分
(3)根據(jù)函數(shù)圖象可得上單調(diào)遞增             7分
時,解得        9分
時,解得                11分
∴區(qū)間.                                  12分
考點:本題考查函數(shù)的性質(zhì)(奇函數(shù));函數(shù)的解析式;函數(shù)的定義域和值域.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

當m為何值時,方程x2-4|x|+5-m=0有四個不相等的實數(shù)根?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)上單調(diào)遞增.
(2)若a>0且f(x)在(1,+∞)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求證:是定值;
(2)判斷并說明有最大值還是最小值,并求出此最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ex-ex(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實數(shù)t,使不等式f(xt)+f(x2t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有 成立,則稱上的有界函數(shù),其中稱為函數(shù)的一個上界.
已知函數(shù),.
(1)若函數(shù)為奇函數(shù),求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;
(3)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

注:此題選A題考生做①②小題,選B題考生做①③小題.
已知函數(shù)是定義在R上的奇函數(shù),且當時有.
①求的解析式;②(選A題考生做)求的值域;
③(選B題考生做)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若,求方程的根;
(2)若函數(shù)滿足,求函數(shù)在的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知增函數(shù)是定義在(-1,1)上的奇函數(shù),其中,a為正整數(shù),且滿足.
⑴求函數(shù)的解析式;
⑵求滿足的范圍;

查看答案和解析>>

同步練習冊答案