【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中, 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線.

(1)求的普通方程及的直角坐標(biāo)方程,并說(shuō)明它們分別表示什么曲線;

2)若分別為, 上的動(dòng)點(diǎn),且的最小值為2,求的值.

【答案】(1) 見(jiàn)解析;(2) .

【解析】試題分析:(1)代入法消去參數(shù)可得 ,利用點(diǎn)斜式即可得出表示一條直線,利用可得 ,配方即可得出表示的曲線是圓;(2)利用點(diǎn)到直線的距離公式可得圓心到直線的距離,利用即可得出.

試題解析:(1)由可得其普通方程為,它表示過(guò)定點(diǎn),斜率為的直線.

可得其直角坐標(biāo)方程為,整理得,它表示圓心為,半徑為1的圓.

(2)因?yàn)閳A心到直線的距離,故的最小值為,故,得,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程是 =1,F(xiàn)1 , F2是它的左、右焦點(diǎn),A,B為它的左、右頂點(diǎn),l是橢圓的右準(zhǔn)線,P是橢圓上一點(diǎn),PA、PB分別交準(zhǔn)線l于M,N兩點(diǎn).
(1)若P(0, ),求 的值;
(2)若P(x0 , y0)是橢圓上任意一點(diǎn),求 的值;
(3)能否將問(wèn)題推廣到一般情況,即給定橢圓方程是 =1(a>b>0),P(x0 , y0)是橢圓上任意一點(diǎn),問(wèn) 是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校高三畢業(yè)班報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將從該市某學(xué)校抽取的樣本數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12. (I)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù)n;
(Ⅱ)若用這所學(xué)校的樣本數(shù)據(jù)來(lái)估計(jì)該市的總體情況,現(xiàn)從該市報(bào)考體育專業(yè)的學(xué)生中任選3人,設(shè)ξ表示體重超過(guò)60千克的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí), 恒成立,求的最大值;

(3)設(shè),若的值域?yàn)?/span>,求的取值范圍.(提示: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若 ,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球.已知從袋中任意摸出1個(gè)球,得到黑球的概率是 ;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是 . (Ⅰ)若袋中共有10個(gè)球,
(i)求白球的個(gè)數(shù);
(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于 .并指出袋中哪種顏色的球個(gè)數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.

(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,求X≤3的概率;

(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣3x+alnx(a>0). (Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)f(x)圖象上任意一點(diǎn)的切線l的斜率為k,當(dāng)k的最小值為1時(shí),求此時(shí)切線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案