【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤(rùn)分別為4萬元、3萬元,則該企業(yè)每天可獲得最大利潤(rùn)為萬元

原料限額

A(噸)

2

5

10

B(噸)

6

3

18

【答案】13
【解析】解:設(shè)每天生產(chǎn)甲乙兩種產(chǎn)品分別為x,y噸,利潤(rùn)為z元, 則 ,
目標(biāo)函數(shù)為 z=4x+3y.
作出二元一次不等式組所表示的平面區(qū)域(陰影部分)即可行域.
由z=4x+3y得y=﹣ ,
平移直線y=﹣ x+ ,由圖象可知當(dāng)直線y=﹣ x+ 經(jīng)過點(diǎn)A時(shí),直線的截距最大,
此時(shí)z最大,
解方程組 ,解得:A( ),
∴zmax=4x+3y=10+3=13.
則每天生產(chǎn)甲乙兩種產(chǎn)品分別為2.5,1噸,能夠產(chǎn)生最大的利潤(rùn),最大的利潤(rùn)是13萬元.
所以答案是:13.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,已知對(duì)任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于(
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考查培育的某種植物的生長(zhǎng)情況,從試驗(yàn)田中隨機(jī)抽取100柱該植物進(jìn)行檢測(cè),得到該植物高度的頻數(shù)分布表如下:

組序

高度區(qū)間

頻數(shù)

頻率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合計(jì)

100

1.00

(Ⅰ)寫出表中①②③④處的數(shù)據(jù);
(Ⅱ)用分層抽樣法從第3、4、5組中抽取一個(gè)容量為6的樣本,則各組應(yīng)分別抽取多少個(gè)個(gè)體?
(Ⅲ)在(Ⅱ)的前提下,從抽出的容量為6的樣本中隨機(jī)選取兩個(gè)個(gè)體進(jìn)行進(jìn)一步分析,求這兩個(gè)個(gè)體中至少有一個(gè)來自第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的三內(nèi)角A、B、C成等差數(shù)列,sinA、sinB、sinC成等比數(shù)列,則這個(gè)三角形的形狀是(
A.直角三角形
B.鈍角三角形
C.等腰直角三角形
D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=﹣2,an+1=2an+4.
(1)證明數(shù)列{an+4}是等比數(shù)列并求出{an}通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣(m+ )x+1
(1)當(dāng)m=2時(shí),解不等式f(x)≤0
(2)若m>0,解關(guān)于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的最小值;

(2)若函數(shù)上單調(diào),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若把連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=25外的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C為△ABC的內(nèi)角,tanA,tanB是關(guān)于方程x2+ px﹣p+1=0(p∈R)兩個(gè)實(shí)根. (Ⅰ)求C的大小
(Ⅱ)若AB=3,AC= ,求p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案