【題目】如圖,在四棱錐中,,且.

(1)證明:平面平面;

(2)若,二面角的大小為,求.

【答案】(1)見解析;(2)

【解析】

1)由題意證明平面,從而證得平面平面;

2)求出平面PAB的法向量和平面PBC的法向量,由此利用向量法能求出cosθ

(1)證明:∵,∴,,

,∴,

又∵,且平面,平面

平面,又平面,

∴平面平面

(2)∵,,∴四邊形為平行四邊形,

由(1)知平面,∴,則四邊形為矩形,

中,由,,

可得為等腰直角三角形,

設(shè),則.

中點(diǎn)中點(diǎn),連接,

為坐標(biāo)原點(diǎn),分別以、所以直線為、、軸建立空間直角坐標(biāo)系,則:

,,.

,,.

設(shè)平面的一個法向量為,

,得,

,得.

平面平面,∴,

,,

平面,則為平面的一個法向量,.

.

由圖可知,二面角為鈍角,

∴二面的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了16月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x;

(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.

附:(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的偶函數(shù),且滿足,若當(dāng)時,,則函數(shù)在區(qū)間上零點(diǎn)的個數(shù)為 ( )

A. 2018 B. 2019 C. 4036 D. 4037

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=4x與點(diǎn)M(0,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若 =0,則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)通過對某企業(yè)今年的生產(chǎn)經(jīng)營情況的調(diào)查,得到每月利潤(單位:萬元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:

1

4

7

12

229

244

241

196

(1)根據(jù)如表數(shù)據(jù),請從下列三個函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述的變化關(guān)系,并說明理由,,,

(2)利用(1)中選擇的函數(shù),估計月利潤最大的是第幾個月,并求出該月的利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱中,已知AB=2,

E、F分別為、上的點(diǎn),且.

(1)求證:BE⊥平面ACF;

(2)求點(diǎn)E到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示PAB,PBC,PCA,ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。寫出對四面體性質(zhì)的猜想,并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: (a>b>0)的左焦點(diǎn)F1與拋物線y2=﹣4x的焦點(diǎn)重合,橢圓E的離心率為 ,過點(diǎn)M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點(diǎn),點(diǎn)P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個結(jié)論:
①已知X服從正態(tài)分布N(0,σ2),且P(﹣2≤X≤2)=0.6,則P(X>2)=0.2;
②若命題 ,則¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直線l1:ax+3y﹣1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
其中正確的結(jié)論的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊答案