【題目】在四面體中, 分別是的中點(diǎn).則下述結(jié)論:

①四面體的體積為;

②異面直線所成角的正弦值為;

③四面體外接球的表面積為;

④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為

其中正確的有_____.(填寫所有正確結(jié)論的編號)

【答案】①③④.

【解析】

補(bǔ)圖成長方體,在長方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計(jì)算截面面積的最值.

根據(jù)四面體特征,可以補(bǔ)圖成長方體設(shè)其邊長為,

,解得

補(bǔ)成長,寬,高分別為的長方體,在長方體中:

①四面體的體積為,故正確

②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;

③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;

④由于,故截面為平行四邊形,可得

設(shè)異面直線所成的角為,則,算得,

.故正確.

故答案為:①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第七屆世界軍人運(yùn)動會(以下簡稱武漢軍運(yùn)會)專題新聞發(fā)布會在武漢舉行,武漢軍運(yùn)會會徽、吉祥物正式公布.武漢軍運(yùn)會將于日舉行,賽期.若將名志愿者分配到兩個運(yùn)動場館進(jìn)行服務(wù),每個運(yùn)動場館至少名志愿者,則其中志愿者甲、乙或甲、丙被分到同一場館的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)f(x)的極值點(diǎn)的個數(shù);

2)若f(x)有兩個極值點(diǎn)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx,若關(guān)于x的方程f2x)﹣afx+aa20有四個不等的實(shí)數(shù)根,則a的取值范圍是(

A.B.(﹣,﹣1)∪[1,+∞

C.(﹣,﹣1)∪{1}D.(﹣1,0)∪{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為,在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.

)求曲線的極坐標(biāo)方程;

)若過點(diǎn)(極坐標(biāo))且傾斜角為的直線與曲線交于兩點(diǎn),弦的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),且,滿足條件的點(diǎn)的軌跡為曲線

1)求曲線的方程;

2)是否存在過點(diǎn)的直線,直線與曲線相交于兩點(diǎn),直線軸分別交于兩點(diǎn),使得?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠利用隨機(jī)數(shù)表對生產(chǎn)的600個零件進(jìn)行抽樣測試,先將600個零件進(jìn)行編號,編號分別為001,002,,599600從中抽取60個樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號  

A. 522B. 324C. 535D. 578

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,的中點(diǎn),點(diǎn)上,平面,的延長線上,且.

(1)證明:平面.

(2)過點(diǎn)的平行線,與直線相交于點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動時,二面角能否等于?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019101日,慶祝中華人民共和國成立70周年大會、閱兵式、群眾游行在北京隆重舉行,這次閱兵編59個方(梯)隊(duì)和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,各型飛機(jī)160余架、裝備580余套,是近幾次閱兵中規(guī)模最大的一次.某機(jī)構(gòu)統(tǒng)計(jì)了觀看此次閱兵的年齡在30歲至80歲之間的100個觀眾,按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求的值及這100個人的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)用分層抽樣的方法在年齡為的人中抽取5人,再從抽取的5人中隨機(jī)抽取2人接受采訪,求接受采訪的2人中年齡在的恰有1人的概率.

查看答案和解析>>

同步練習(xí)冊答案