【題目】已知函數(shù)f(x)= , ①若f(a)=14,求a的值
②在平面直角坐標(biāo)系中,作出函數(shù)y=f(x)的草圖.(需標(biāo)注函數(shù)圖象與坐標(biāo)軸交點(diǎn)處所表示的實(shí)數(shù))
【答案】解:①∵函數(shù)f(x)= ,f(a)=14,
當(dāng)a≥0時(shí),由f(a)=2a﹣2=14,求得a=4;
當(dāng)a<0時(shí),由f(a)=1﹣2a=14,求得a=﹣ .
綜上可得,a=4或a=﹣ .
②當(dāng)x≥0時(shí),把函數(shù)y=2x的圖象向下平移2個(gè)單位,
可得f(x)的圖象;
當(dāng)x<0時(shí),作出函數(shù)y=1﹣2x的圖象即可得到f(x)的圖象.
在平面直角坐標(biāo)系中,作出函數(shù)y=f(x)的草圖,如圖所示:
【解析】①分當(dāng)a≥0時(shí)和當(dāng)a<0時(shí)2種情況,分別根據(jù)f(a)=14,求得a的值.②分當(dāng)x≥0時(shí)和當(dāng)x<0時(shí)2種情況,分別作出函數(shù)f(x)的圖象.
【考點(diǎn)精析】掌握函數(shù)的圖象是解答本題的根本,需要知道函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax2(其中a是實(shí)數(shù)),且f'(1)=3.
(1)求a的值及曲線y=f(x)在點(diǎn)Q(1,f(1))處的切線方程;
(2)求f(x)在區(qū)間[0,2]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓H: +y2=1(a>1),原點(diǎn)O到直線MN的距離為 ,其中點(diǎn)M(0,﹣1),點(diǎn)N(a,0).
(1)求該橢圓H的離心率e;
(2)經(jīng)過橢圓右焦點(diǎn)F2的直線l和該橢圓交于A,B兩點(diǎn),點(diǎn)C在橢圓上,O為原點(diǎn), 若 = + ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于區(qū)間,若函數(shù)同時(shí)滿足:①在上是單調(diào)函數(shù);②函數(shù), 的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
()求函數(shù)的所有“保值”區(qū)間.
()函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知U={y|y=log2x,x>1},P={y|y= ,x>2},則UP=( )
A.[ ,+∞)
B.(0, )
C.(0,+∞)
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)集,其中, .定義向量集.若對(duì)于任意,存在,使得,則稱具有性質(zhì).例如具有性質(zhì).
(1)若,且具有性質(zhì),求的值;
(2)若具有性質(zhì),求證: ,且當(dāng)時(shí), .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com