【題目】如圖,四棱錐中,底面,,,,為的中點(diǎn),.
(1)求的長(zhǎng);
(2)求二面角的正弦值.
【答案】(1);(2).
【解析】
試題分析:(1)連接交于點(diǎn),等腰三角形中利用“三線合一”證出,因此分別以、所在直線分別為軸、軸建立空間直角坐標(biāo)系如圖所示.結(jié)合題意算出、、、
各點(diǎn)的坐標(biāo),設(shè),根據(jù)為邊的中點(diǎn)且,算出,從而得到,可得的長(zhǎng);(2)由(1)的計(jì)算,得,,.利用垂直向量數(shù)量積為零的方法建立方程組,解出和分別為平面、平面的法向量,利用空間向量的夾角公式算出、夾角的余弦,結(jié)合同角三角函數(shù)的平方關(guān)系即可算出二面角的正弦值.
試題解析:(1)如圖,連接交于點(diǎn),
∵,平分角,∴,
以為坐標(biāo)原點(diǎn),、所在直線分別為軸、軸,建立空間直角坐標(biāo)系,
則,而,可得,
又∵,
∴可得,,,,
由于⊥底面,可設(shè),
∵為邊的中點(diǎn),∴,由此可得,
∵,且,
∴,解得(舍負(fù)),
因此,,可得的長(zhǎng)為.
(2)由(1)知,,,
設(shè)平面的法向量為,平面的法向量為,
∵,且,∴,取,得,
同理,由且,解出.
∴向量,的夾角余弦值為,
因此,二面角的正弦值等于.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,判斷函數(shù)的單調(diào)性;
(2)若函數(shù)在定義域內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +在1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠每日生產(chǎn)某種產(chǎn)品噸,當(dāng)日生產(chǎn)的產(chǎn)品當(dāng)日銷(xiāo)售完畢,產(chǎn)品價(jià)格隨產(chǎn)品產(chǎn)量而變化,當(dāng)時(shí),每日的銷(xiāo)售額(單位:萬(wàn)元)與當(dāng)日的產(chǎn)量滿(mǎn)足,當(dāng)日產(chǎn)量超過(guò)噸時(shí),銷(xiāo)售額只能保持日產(chǎn)量噸時(shí)的狀況.已知日產(chǎn)量為噸時(shí)銷(xiāo)售額為萬(wàn)元,日產(chǎn)量為噸時(shí)銷(xiāo)售額為萬(wàn)元.
(1)把每日銷(xiāo)售額表示為日產(chǎn)量的函數(shù);
(2)若每日的生產(chǎn)成本(單位:萬(wàn)元),當(dāng)日產(chǎn)量為多少?lài)崟r(shí),每日的利潤(rùn)可以達(dá)到最大?并求出最大值.(注:計(jì)算時(shí)取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若存在,使得(是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象如圖所示.
(Ⅰ)求的值;
(Ⅱ)若函數(shù)在處的切線方程為,求函數(shù)的解析式;
(Ⅲ)在(Ⅱ)的條件下,函數(shù)與的圖象有三個(gè)不同的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(I)求證:恒成立;
(II)若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐,底面側(cè)面,分別為的中點(diǎn),且,,,.
(I)證明:平面;
(II)設(shè),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過(guò)點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線于兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com