如圖,邊長為2的正方形中,點的中點,點的中點,將△、△分別沿、折起,使、兩點重合于點,連接,

(1)求證:
(2)求二面角的余弦值.

(1)詳見解析;(2).

解析試題分析:(1)由,證出平面,進而證出結論;(2)方法一:根據(jù)對稱可判斷即為所求,由(1)可證△為直角三角形,再求出邊長即可;方法二:建系,求出平面和平面的法向量,兩法向量的夾角的余弦值即為所求.
試題解析:(1)在正方形中,有,              1分
,                                              2分
                                                        3分
平面                                                      4分
平面,∴                                        5分
(2)方法一:連接于點,連接                           6分
∵在正方形中,點的中點,點的中點,
,
∴點的中點,
                                                            7分
∵正方形的邊長為2,∴,∴                8分
為二面角的平面角         9分

由(1)可得
∴△為直角三角形       10分
∵正方形的邊長為2,
,
,
                       11分
          

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱(側棱垂直于底面的棱柱),底面,棱,分別為的中點.

(1)求>的值;
(2)求證: 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐P-ABCD的底面ABCD是等腰梯形,ABCD,且ACBDACBD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,EF分別是AB,AP的中點.
 
(1)求證:ACEF;
(2)求二面角F-OE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.

(1) 證明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的空間直角坐標系O-xyz中,原點O是BC的中點,A點坐標為,D點在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.

(Ⅰ)求D點坐標;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.

(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C 與平面BB1C1C所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.

(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點.沿BD將△BCD翻折到△,使得平面⊥平面ABD.

(Ⅰ)求證:平面ABD;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中.
(Ⅰ)求的長;
(Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

同步練習冊答案