(Ⅰ)解不等式f(x)≤1;
(Ⅱ)證明:當(dāng)a ≥1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)函數(shù).
20.本小題主要考查不等式的解法、函數(shù)的單調(diào)性等基本知識(shí),分類討論的數(shù)學(xué)思想方法和運(yùn)算、推理能力.
(Ⅰ)解:不等式f(x)≤1,即≤1+ax,
由此得1≤1+ax,即ax≥0.
其中常數(shù)a>0,
所以,原不等式等價(jià)于
即
所以,當(dāng)0<a<1時(shí),所給不等式的解集為{x|0≤x≤};
當(dāng)a≥1時(shí),所給不等式的解集為{x|x≥0}.
(Ⅱ)證明:在區(qū)間[0,+∞)上任取x1,x2,使得x1<x2.
f(x1)-f(x2)=
=
=.
∵<1,且a≥1,
∴<0,
又x1-x2<0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2).
所以,當(dāng)a≥1時(shí),函數(shù)f(x)在區(qū)間[0,+ ∞)上是單調(diào)遞減函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com