【題目】綠水青山就是金山銀山.近年來,祖國各地依托本地自然資源,打造旅游產(chǎn)業(yè),旅游業(yè)正蓬勃發(fā)展.景區(qū)與游客都應(yīng)樹立尊重自然、順應(yīng)自然、保護自然的生態(tài)文明理念,合力使旅游市場走上規(guī)范有序且可持續(xù)的發(fā)展軌道.某景區(qū)有一個自愿消費的項目:在參觀某特色景點入口處會為每位游客拍一張與景點的合影,參觀后,在景點出口處會將剛拍下的照片打印出來,游客可自由選擇是否帶走照片,若帶走照片則需支付20元,沒有被帶走的照片會收集起來統(tǒng)一銷毀.該項目運營一段吋間后,統(tǒng)計出平均只有三成的游客會選擇帶走照片,為改善運營狀況,該項目組就照片收費與游客消費意愿關(guān)系作了市場調(diào)研,發(fā)現(xiàn)收費與消費意愿有較強的線性相關(guān)性,并統(tǒng)計出在原有的基礎(chǔ)上,價格每下調(diào)1元,游客選擇帶走照片的可能性平均增加0.05,假設(shè)平均每天約有5000人參觀該特色景點,每張照片的綜合成本為5元,假設(shè)每個游客是否購買照片相互獨立.

1)若調(diào)整為支付10元就可帶走照片,該項目每天的平均利潤比調(diào)整前多還是少?

2)要使每天的平均利潤達到最大值,應(yīng)如何定價?

【答案】1)多10000元;(2)定價為13

【解析】

1)先根據(jù)概率分布求數(shù)學(xué)期望,再比較兩個期望大小得結(jié)果;

2)先根據(jù)概率分布求數(shù)學(xué)期望函數(shù)關(guān)系式,再根據(jù)二次函數(shù)性質(zhì)求最值.

1)當(dāng)收費為20元時,照片被帶走的可能性為0.3,不被帶走的可能性為0.7,設(shè)每個游客的利潤為(元),則是隨機變量,其分布列為:

15

5

0.3

0.7

元,則500個游客的平均利潤為5000元;

當(dāng)收費為10元時,照片被帶走的可能性為,不被帶走的可能性為0.2,

設(shè)每個游客的利潤為(元),則是隨機變量,其分布列為:

5

5

0.8

0.2

元,則500個游客的平均利潤為15000元;

該項目每天的平均利潤比調(diào)整前多10000.

2)設(shè)降價元,則,照片被帶走的可能性為,

不被帶走的可能性為

設(shè)每個游客的利潤為(元),則是隨機變量,其分布列為:

5

當(dāng)時,有最大值3.45元,

即當(dāng)定價為13元時,日平均利潤為17250.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我們的教材必修一中有這樣一個問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:

方案一:每天回報元;

方案二:第一天回報元,以后每天比前一天多回報元;

方案三:第一天回報元,以后每天的回報比前一天翻一番.

記三種方案第天的回報分別為,,.

1)根據(jù)數(shù)列的定義判斷數(shù)列,的類型,并據(jù)此寫出三個數(shù)列的通項公式;

2)小王準(zhǔn)備做一個為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)設(shè),當(dāng)時,對任意,存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ6sinθ,建立以極點為坐標(biāo)原點,極軸為x軸正半軸的平面直角坐標(biāo)系.直線l的參數(shù)方程是(t為參數(shù))

(1)求曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C相交于AB兩點,且|AB|=,求直線的斜率k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知兩定點,,動點滿足.

1)求動點的軌跡的方程;

2)軌跡上有兩點,,它們關(guān)于直線對稱,且滿足,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)揮體育核心素養(yǎng)的獨特育人價值,越來越多的中學(xué)將某些體育項目納入到學(xué)生的必修課程.惠州市某中學(xué)計劃在高一年級開設(shè)游泳課程,為了解學(xué)生對游泳的興趣,某數(shù)學(xué)研究學(xué)習(xí)小組隨機從該校高一年級學(xué)生中抽取了100人進行調(diào)查.

1)已知在被抽取的學(xué)生中高一班學(xué)生有6名,其中3名對游泳感興趣,現(xiàn)在從這6名學(xué)生中隨機抽取3人,求至少有2人對游泳感興趣的概率;

2)該研究性學(xué)習(xí)小組在調(diào)查中發(fā)現(xiàn),對游泳感興趣的學(xué)生中有部分曾在市級或市級以上游泳比賽中獲獎,具體獲獎人數(shù)如下表所示.若從高一班和高一班獲獎學(xué)生中隨機各抽取2人進行跟蹤調(diào)查,記選中的4人中市級以上游泳比賽獲獎的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.

班級

市級

比賽獲獎人數(shù)

2

2

3

3

4

4

3

3

4

2

市級以上

比賽獲獎人數(shù)

2

2

1

0

2

3

3

2

1

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點為,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰中,,,分別為,的中點,的中點,在線段上,且。將沿折起,使點的位置(如圖2所示),且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

同步練習(xí)冊答案