給出下列四個(gè)命題
(1)“當(dāng)x∈R時(shí),sinx+cosx≤1”是必然事件
(2)“當(dāng)x∈R時(shí),sinx+cosx≤1”是不可能事件
(3)“當(dāng)x∈R時(shí),sinx+cosx<2”是隨機(jī)事件
(4)“當(dāng)x∈R時(shí),sinx+cosx<2”是必然事件
其中正確命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3
分析:根據(jù)三角函數(shù)的性質(zhì),易得到當(dāng)x∈R時(shí),sinx+cosx的取值范圍,進(jìn)而根據(jù)必然事件,不可能事件,隨機(jī)事件的定義,逐一對(duì)題目中的四個(gè)答案進(jìn)行分析,即可得到結(jié)論.
解答:解:當(dāng)x∈R時(shí),sinx+cosx∈[-
2
,
2
]
∴(1)“當(dāng)x∈R時(shí),sinx+cosx≤1”是必然事件是假命題;
(2)“當(dāng)x∈R時(shí),sinx+cosx≤1”是不可能事件是假命題;
(3)“當(dāng)x∈R時(shí),sinx+cosx<2”是隨機(jī)事件是假命題;
(4)“當(dāng)x∈R時(shí),sinx+cosx<2”是必然事件是真命題;
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,隨機(jī)事件、必然事件、不可能事件定義,三角函數(shù)的值域,其中根據(jù)三角形函數(shù)的性質(zhì),得到sinx+cosx的取值范圍,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

符號(hào)[x]表示不超過(guò)x的最大整數(shù),例如[π]=3,[-1.08]=-2,定義函數(shù){x}=x-[x],給出下列四個(gè)命題
(1)函數(shù){x}的定義域?yàn)镽,值域?yàn)閇0,1];
(2)方程{x}=
1
2
有無(wú)數(shù)個(gè)解;
(3)函數(shù){x}是周期函數(shù);
(4)函數(shù){x}是增函數(shù).
其中正確命題的序號(hào)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,給出下列四個(gè)命題
(1)若m∥α,n∥α,則m∥n
(2)若m∥α,n⊥α,則n⊥m
(3)若m⊥n,m⊥α,則n∥α
(4)若m?α,n?β,m∥n,則α∥β
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用m,n表示直線,α,β,γ表示平面,給出下列四個(gè)命題
(1)α∩β=m,n?α,n⊥m,則α⊥β
(2)α⊥β,α∩γ=m,β∩γ=n,則n⊥m
(3)α⊥β,α⊥γ,β∩γ=m,則m⊥α
(4)m⊥α,n⊥β,m⊥n,則α⊥β
其中正確的序號(hào)為
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題
(1)“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
(2)“a=3”是“直線ax+2y+3a=0與直線3x+(a-1)y=a-7互相平行”的充要條件;
(3)函數(shù)y=
x2+4
x2+3
的最小值為2;
(4)雙曲線
x2
9
-y2=1
的兩條漸近線是y=±
x
3

其中是假命題為
(1)(3)
(1)(3)
(將你認(rèn)為是假命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案