【題目】已知橢圓軸正半軸交于點,與軸交于、兩點.

1)求過、三點的圓的方程;

2)若為坐標原點,直線與橢圓和(1)中的圓分別相切于點和點、不重合),求直線與直線的斜率之積.

【答案】1;(2.

【解析】

1)求出、三點的坐標,求得圓心的坐標,進而求出圓的半徑,由此可求得圓的方程;

2)設直線的方程為存在且),將直線的方程與橢圓的方程聯(lián)立,由可得,由直線與圓相切可得出,進而可得出,求出直線與直線的斜率,進而可求得結果.

1)由題意可得、,則圓心軸上,設點,

,可得,解得,圓的半徑為.

因此,圓E的方程為;

2)由題意:可設的方程為存在且),

與橢圓聯(lián)立消去可得

由直線與橢圓相切,可設切點為,由,

可得,解得,,

由圓與直線相切,即,可得.

因此由,可得,

直線的斜率為,直線的斜率,

綜上:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有高階等差數(shù)列,其前7項分別為15,11,21,37,6l95,則該數(shù)列的第8項為( )

A.99B.131C.139D.141

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 與圓相交于M,N,P,Q四點,四邊形MNPQ為正方形,△PF1F2的周長為

1)求橢圓C的方程;

2)設直線l與橢圓C相交于A、B兩點若直線AD與直線BD的斜率之積為,證明:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學著作《孫子算經》中有這樣一道算術題:今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?,將上述問題的所有正整數(shù)答案從小到大組成一個數(shù)列,則______;______.(注:三三數(shù)之余二是指此數(shù)被3除余2,例如“5”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù),它的導函數(shù)為.

(1)當時,求的零點;

(2)若函數(shù)存在極小值點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出下列三個結論:

①當時,函數(shù)的單調遞減區(qū)間為

②若函數(shù)無最小值,則的取值范圍為

③若,則,使得函數(shù).恰有3個零點,,且

其中,所有正確結論的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)求的單調區(qū)間;

(2)若對于任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省從2021年開始,高考采用取消文理分科,實行的模式,其中的“1”表示每位學生必須從物理、歷史中選擇一個科目且只能選擇一個科目.某校高一年級有2000名學生(其中女生900人).該校為了解高一年級學生對“1”的選課情況,采用分層抽樣的方法抽取了200名學生進行問卷調查,下表是根據(jù)調查結果得到的列聯(lián)表.

性別

選擇物理

選擇歷史

總計

男生

________

50

女生

30

________

總計

________

________

200

1)求,的值;

2)請你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認為選擇科目與性別有關?說明你的理由.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩焦點為,且橢圓上一點,滿足,直線與橢圓交于兩點,與軸、軸分別交于點、,且.

1)求橢圓的方程;

2)若,且,求的值;

3)當△面積取得最大值,且點在橢圓上時,求的值.

查看答案和解析>>

同步練習冊答案