【題目】甲廠根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元),其中固定成本為3萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷(xiāo)售收入R(x)= ,假定該產(chǎn)品產(chǎn)銷(xiāo)平衡(即生產(chǎn)的產(chǎn)品都能賣(mài)掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫(xiě)出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷(xiāo)售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺(tái)新產(chǎn)品時(shí),可使盈利最多?
【答案】
(1)解:由題意得G(x)=3+x,
由R(x)= ,
∴f(x)=R(x)﹣G(x)=
(2)解:當(dāng)x>5時(shí),∵函數(shù)y=f(x)遞減,
∴f(x)<8.2﹣5=3.2(萬(wàn)元),
當(dāng)0≤x≤5時(shí),f(x)=﹣0.4(x﹣4)2+3.6,
當(dāng)x=4時(shí),f(x)有最大值為3.6(萬(wàn)元).
答:當(dāng)工廠生產(chǎn)4百臺(tái)時(shí),可使贏利最大為3.6(萬(wàn)元)
【解析】(1)由題意可得f(x)=R(x)﹣G(x),對(duì)x討論0≤x≤5,x>5即可得到;(2)分別討論0≤x≤5,x>5的函數(shù)的單調(diào)性,即可得到最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程。
在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t是參數(shù)),以原點(diǎn)O為極點(diǎn),x 軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=8cos(θ﹣).
(1)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點(diǎn),求|AB|的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值為( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)已知 是空間的兩個(gè)單位向量,它們的夾角為60°,設(shè)向量 , .求向量 與 的夾角; (Ⅱ)已知 是兩個(gè)不共線的向量, .求證: 共面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,則實(shí)數(shù)a取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)= (a∈R)是奇函數(shù),函數(shù)g(x)= 的定義域?yàn)椋ī?,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣2,+∞)上單調(diào)遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: (a>b>0)的離心率為,且過(guò)點(diǎn)(1,).過(guò)橢圓C的左頂點(diǎn)A作直線交橢圓C于另一點(diǎn)P,交直線l:x=m(m>a)于點(diǎn)M.已知點(diǎn)B(1,0),直線PB交l于點(diǎn)N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的增函數(shù)y=f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com