【題目】命題p:關(guān)于x的不等式x2+2ax+4>0對一切x∈R恒成立;命題q:函數(shù)f(x)=lagax在(0,+∞)上遞增,若p∨q為真,而p∧q為假,求實(shí)數(shù)a的取值范圍.
【答案】解:命題p:關(guān)于x的不等式x2+2ax+4>0對一切x∈R恒成立;
①若命題p正確,則△=(2a)2﹣42<0,即﹣2<a<2;
②命題q:函數(shù)f(x)=logax在(0,+∞)上遞增a>1,
∵p∨q為真,而p∧q為假,
∴p、q一真一假,
當(dāng)p真q假時(shí),有 ,
∴﹣2<a≤1;
當(dāng)p假q真時(shí),有 ,
∴a≥2
∴綜上所述,﹣2<a≤1或a≥2.
即實(shí)數(shù)a的取值范圍為(﹣2,1]∪[2,+∞).
【解析】依題意,可分別求得p真、q真時(shí)m的取值范圍,再由p∨q為真,而p∧q為假求得實(shí)數(shù)a的取值范圍即可.
【考點(diǎn)精析】利用復(fù)合命題的真假對題目進(jìn)行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)在處取得極小值,設(shè)此時(shí)函數(shù)的極大值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合命題函數(shù)在上是減函數(shù);命題函數(shù)的值域?yàn)?/span>.
(Ⅰ)若為真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果為真命題, 為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,討論的單調(diào)性;
(Ⅱ)若函數(shù)的圖象上存在不同的兩點(diǎn),使得直線的斜率成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等比數(shù)列,a1=2,a3=18.?dāng)?shù)列{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)Pn=b1+b4+b7+…+b3n﹣2 , Qn=b10+b12+b14+…+b2n+8 , 其中n=1,2,3,….試比較Pn與Qn的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=log2(x2﹣3x+2)的遞減區(qū)間是( )
A.(﹣∞,1)
B.(2,+∞)
C.(﹣∞, )
D.( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形中, , 是邊的中點(diǎn),如圖(1),將沿直線翻折到的位置,使,如圖(2).
(Ⅰ)求證:平面平面;
(Ⅱ)已知, , 分別是線段, , 上的點(diǎn),且, , 平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C是△ABC的三個(gè)內(nèi)角.
(1)3cos(B﹣C)﹣1=6cosBcosC,求cosA的值;
(2)若sin(A+ )=2cosA,求A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<k<4,直線l1:kx﹣2y﹣2k+8=0和直線l:2x+k2y﹣4k2﹣4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則使得這個(gè)四邊形面積最小的k值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com