【題目】已知函數(shù)f(x)=2x+a2x , 其中常數(shù)a≠0.
(1)當(dāng)a=1時(shí),f(x)的最小值;
(2)當(dāng)a=256時(shí),是否存在實(shí)數(shù)k∈(1,2],使得不等式f(k﹣cosx)≥f(k2﹣cos2x)對(duì)任意x∈R恒成立?若存在,求出所有滿足條件的k的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:當(dāng)a=1時(shí),f(x)=2x+ ≥2 =2,

當(dāng)且僅當(dāng) ,即x=0時(shí)取等號(hào)


(2)解:當(dāng)k∈(1,2]時(shí),0<k﹣cosx≤3,0<k2﹣cos2x≤4,

當(dāng)a=256時(shí),f(x)=2x+2562x

由復(fù)合函數(shù)的單調(diào)性知,f(x)在(0,4)上是減函數(shù),要使不等式f(k﹣cosx)≥f(k2﹣cos2x)對(duì)任意x∈R恒成立,只要k﹣cosx≤k2﹣cos2x,即cos2x﹣cosx≤k2﹣k

設(shè)g(x)=cos2x﹣cosx,則g(x)的最大值為2.

要使得①式成立,必須k2﹣k≥2,即k≥2或k≤﹣1

∴在區(qū)間(1,2]上存在k=2,使得原不等式對(duì)任意的x∈R恒成立


【解析】(1)利用基本不等式a+b≥2 (a>0,b>0)直接可求得最小值;(2)復(fù)合函數(shù)的單調(diào)性知,f(x)在(0,4)上是減函數(shù),要使不等式f(k﹣cosx)≥f(k2﹣cos2x)對(duì)任意x∈R恒成立,只要k﹣cosx≤k2﹣cos2x,即cos2x﹣cosx≤k2﹣k ①;設(shè)g(x)=cos2x﹣cosx,則g(x)的最大值為2.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專(zhuān)論測(cè)高望遠(yuǎn).其中有一題今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問(wèn)島高及去表各幾何?翻譯如下:要測(cè)量海島上一座山峰的高度,立兩根高三丈的標(biāo)桿,前后兩竿相距,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、三點(diǎn)也共線,山峰的高度__________步.(古制尺,步)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin2xcos2x+sin22x﹣
(1)求函數(shù)f(x)的最小正周期及對(duì)稱(chēng)中心;
(2)在△ABC中,角B為鈍角,角A,B,C的對(duì)邊分別為a、b、c,f( )= ,且sinC= sinA,SABC=4,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+ |﹣|x﹣ |;
(1)作出函數(shù)f(x)的圖象;
(2)根據(jù)(1)所得圖象,填寫(xiě)下面的表格:

性質(zhì)

定義域

值域

單調(diào)性

奇偶性

零點(diǎn)

f(x)


(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個(gè)不同的實(shí)數(shù)解,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4滿足f(xl)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則x1x2x3x4的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0a≠1,設(shè)命題p:函數(shù)y=loga(x-1)(1,+∞)上單調(diào)遞減,命題q:曲線y=x2+(a-2)x+4x軸交于不同的兩點(diǎn).若pq為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax﹣ax+2,若g(2)=a,則f(2)=(
A.2
B.
C.
D.a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2+n.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)數(shù)列{bn}滿足bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門(mén)對(duì)某食品廠生產(chǎn)的甲、乙兩種食品進(jìn)行了檢測(cè)調(diào)研,檢測(cè)某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測(cè)量數(shù)據(jù)的莖葉圖(單位:毫克)

規(guī)定:當(dāng)食品中的有害微量元素含量在[0,10]時(shí)為一等品,在(10,20]為二等品,20以上為劣質(zhì)品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè).求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;
(2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元.根據(jù)上表統(tǒng)計(jì)得到的甲、乙兩種食品為一等品、二等品、劣質(zhì)品,的頻率分別估計(jì)這兩種食品為,一等品、二等品、劣質(zhì)品的概率.若分別從甲、乙食品中各抽取l件,設(shè)這兩件食品給該廠帶來(lái)的盈利為X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案