【題目】已知橢圓的離心率為,且過點,若點在橢圓C上,則點稱為點M的一個“橢點”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓C相交于A,B兩點,且A,B兩點的“橢點”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,質(zhì)點從正方體的頂點出發(fā),沿正方體的棱運動,每經(jīng)過一條棱稱之為一次運動,第一次運動經(jīng)過,第二次運動經(jīng)過,第三次運動經(jīng)過,且對于任意的正整數(shù),第次運動所經(jīng)過的棱與第次運動所經(jīng)過的棱所在的直線是異面直線,則經(jīng)過2019次運動后,點到達的頂點為________點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機廠商在銷售200萬臺某型號手機時開展“手機碎屏險”活動、活動規(guī)則如下:用戶購買該型號手機時可選購“手機碎屏險”,保費為元,若在購機后一年內(nèi)發(fā)生碎屏可免費更換一次屏幕.該手機廠商將在這萬臺該型號手機全部銷售完畢一年后,在購買碎屏險且購機后一年內(nèi)未發(fā)生碎屏的用戶中隨機抽取名,每名用戶贈送元的紅包,為了合理確定保費的值,該手機廠商進行了問卷調(diào)查,統(tǒng)計后得到下表(其中表示保費為元時愿意購買該“手機碎屏險”的用戶比例);
(1)根據(jù)上面的數(shù)據(jù)求出關(guān)于的回歸直線方程;
(2)通過大數(shù)據(jù)分析,在使用該型號手機的用戶中,購機后一年內(nèi)發(fā)生碎屏的比例為.已知更換一次該型號手機屏幕的費用為元,若該手機廠商要求在這次活動中因銷售該“手機碎屏險”產(chǎn)生的利潤不少于萬元,能否把保費定為5元?
x | 10 | 20 | 30 | 40 | 50 |
y | 0.79 | 0.59 | 0.38 | 0.23 | 0.01 |
參考公式:回歸方程中斜率和截距的最小二乘估計分別為,
,
參考數(shù)據(jù):表中的5個值從左到右分別記為,相應(yīng)的值分別記為,經(jīng)計算有,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,設(shè)直線與軸的交點為,過點且斜率為的直線與橢圓交于兩點,為線段的中點.
(1)若直線的傾斜角為,求的值;
(2)設(shè)直線交直線于點,證明:直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).在以坐標(biāo)原點為極點,以軸正半軸為極軸建立的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,曲線的直角坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線分別相交于異于原點的點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com