【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量=(sinA+sinC,sinB),=(c﹣b,c﹣a),且

(1)求角A的大;

(2)若a=3,b+c=5,求△ABC的面積.

【答案】(1) A=60°;(2) .

【解析】

(1)根據(jù)向量平行的坐標(biāo)運(yùn)算得到b2+c2﹣a2=bc,結(jié)合余弦定理可得到A=60°;(2)根據(jù)余弦定理得到bc=,由面積公式得到結(jié)果.

(1)∵向量=(sinA+sinC,sinB),=(c﹣b,c﹣a),且

∴由題意結(jié)合向量共線可得:(sinA+sinC)(c﹣a)=sinB(c﹣b),

∴由正弦定理可得(a+c)(c﹣a)﹣b(c﹣b)=0,

∴整理可得:b2+c2﹣a2=bc,

∴由余弦定理可得cosA==,

∵A為三角形的內(nèi)角,

∴A=60°;

(2)∵由余弦定理可得b2+c2﹣9=bc,

∴(b+c)2﹣9=3bc,

∴解得:bc=,

∴△ABC的面積S=bcsinA==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為高消費(fèi)群” .

(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為高消費(fèi)群與性別有關(guān)?

高消費(fèi)群

非高消費(fèi)群

合計(jì)

10

50

合計(jì)

(參考公式:,其中

P()

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四個(gè)小球,分別寫有“和、平、世、界”四個(gè)字,有放回地從中任取一個(gè)小球,直到“和”“平”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“和、平、世、界”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下24個(gè)隨機(jī)數(shù)組:

232 321 230 023 123 021 132 220 011 203 331 100

231 130 133 231 031 320 122 103 233 221 020 132

由此可以估計(jì),恰好第三次就停止的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P所在平面外一點(diǎn),點(diǎn),,分別是,,的重心.

1)求證:平面平面ABC

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,、兩兩垂直,平面平面,平面平面,.

1)證明:四邊形是正方形;

2)判斷點(diǎn)、、是否共面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為為圓上的點(diǎn),,,分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,,使得重合,得到一個(gè)四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時(shí),該四棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x),滿足f(x+4)=-f(x)+f(2),且在區(qū)間[0,4]上是增函數(shù),下列命題中正確的是(

A.函數(shù)f(x)的一個(gè)周期為4

B.直線x=-4是函數(shù)f(x)圖象的一條對(duì)稱軸

C.函數(shù)f(x)[-6,-5)上單調(diào)遞增,在[-5,-4)上單調(diào)遞減

D.函數(shù)f(x)[0,100]內(nèi)有25個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各國醫(yī)療科研機(jī)構(gòu)都在研制某種病毒疫苗,現(xiàn)有G,E,F三個(gè)獨(dú)立的醫(yī)療科研機(jī)構(gòu),它們?cè)谝欢〞r(shí)期內(nèi)能研制出疫苗的概率分別是.求:

1)他們都研制出疫苗的概率;

2)他們都失敗的概率;

3)他們能夠研制出疫苗的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案